[1]
A.G. Evans, Perspective on the Development of High-Toughness Ceramics, J. Am. Ceram. Soc., 73.
Google Scholar
[2]
(1990) 187-205.
Google Scholar
[2]
K. Heussner, N. Claussen, Yttria- and ceria-stabilized tetragonal zirconia polycrystals (Y-TZP, Ce-TZP) reinforced with Al2O3 platelets, J. Eur. Ceram. Soc. 5.
DOI: 10.1016/0955-2219(89)90035-6
Google Scholar
[3]
(1989) 189-93.
Google Scholar
[3]
M.J. Hoffmann, Relationship between microstructure and mechanical properties of silicon nitride ceramics", Pure & Appl. Chem., 67.
Google Scholar
[6]
(1995) 939-946.
Google Scholar
[4]
M. Nader, F. Aldinger, M.J. Hoffmann, Influence of the α/β-SiC phase transformation on microstructural development and mechanical properties of liquid phase sintered silicon carbide, J. Mat. Sci. , 34.
Google Scholar
[6]
(1999) 1197-1204.
Google Scholar
[5]
P. L. Chen, I.W. Chen, In-Situ Alumina/Aluminate Platelet Composites, J. Am. Ceram. Soc., 75.
Google Scholar
[9]
(1992) 2610-12.
Google Scholar
[6]
W. Burger, H.G. Richter, High strength and toughness alumina matrix composites by transformation toughening and in situ, platelet reinforcement (ZPTA) – the new generation of bioceramics, Key Eng. Mat. 192-195, (2001] 545-48.
DOI: 10.4028/www.scientific.net/kem.192-195.545
Google Scholar
[7]
R.A. Cutler, R.J. Mayhew, K.M. Prettiman, A Virkar, High-Toughness Ce-TZP/Al2O3 Ceramics with Improved Hardness and Strength, J. Am. Ceram. Soc., 74.
DOI: 10.1002/chin.199116007
Google Scholar
[1]
(1991] 179-186.
Google Scholar
[8]
R. Guo, D. Guo, Y. Chen, Z. Yang, Q. Yuan, In situ formation of LaAl11O18 rodlike particles in ZTA ceramics and effect on the mechanical properties, Ceram. Int. 28, (2002) 699-704.
DOI: 10.1016/s0272-8842(02)00031-7
Google Scholar
[9]
M.H., A.G. Evans, J.W. Hutchinson, Crack deflection at an interface between dissimilar elastic materials – the role of residual stresses, Int. J. solids Struct., 31.
DOI: 10.1016/0020-7683(94)90025-6
Google Scholar
[24]
(1994) 3443-55.
Google Scholar
[10]
C. Schmid, E. Lucchini, O. Sbaizero, S. Maschio, The Synthesis of Calcium or Strontium Hexaluminate Added ZTA Composite Ceramics, J. Eur. Ceram. Soc. 19 (1999) 1741-1746.
DOI: 10.1016/s0955-2219(98)00277-5
Google Scholar
[11]
F. Kern, R. Gadow, Properties of Injection Moulded Alumina-Toughened Zirconia , J. Ceram. Sci. Techn. 2.
Google Scholar
[1]
(2010) 47-54.
Google Scholar
[12]
F. Kern, A comparison of microstructure and mechanical properties of 12Ce-TZP reinforced with alumina and in situ formed strontium- or lanthanum hexaaluminate precipitates, J. Eur. Ceram. Soc., 34.
DOI: 10.1016/j.jeurceramsoc.2013.08.037
Google Scholar
[2]
(2013) 413-23.
Google Scholar
[13]
F. Kern, Effect of ceriumhexaaluminate precipitates on properties of alumina -24 vol-% zirconia (1. 4Y) composites, J. Ceram. Sci. Techn., 4.
Google Scholar
[4]
(2013) 177-186.
Google Scholar
[14]
F. Kern, Evolution of microstructure, phase composition and mechanical properties in zirconia toughened alumina reinforced with cerium hexaaluminate precipitates, Scripta Materialia, 67.
DOI: 10.1016/j.scriptamat.2012.09.019
Google Scholar
[12]
(2012) 1007-1010.
Google Scholar
[15]
M. A. El Ezz, Manufacturing of injection molded ceramic nanocomposites for biomedical applications, Doctoral Thesis, University of Stuttgart, (2013).
Google Scholar
[16]
H. Toraya, M. Yoshimura, S. Somiya, Calibration Curve for Quantitative Analysis of the Monoclinic-Tetragonal ZrO2 System by X-Ray Diffraction, J. Am. Ceram. Soc., 67.
DOI: 10.1111/j.1151-2916.1984.tb19715.x
Google Scholar
[6]
(1984) C119-21.
Google Scholar
[17]
D.K. Kim, W. Kriven, Processing and Characterization of Multiphase Ceramic Composites Part II: Triplex Composites with a Wide Sintering Temperature Range, J. Am. Ceram. Soc., 91.
DOI: 10.1111/j.1551-2916.2008.02262.x
Google Scholar
[3]
(2008) 793–798.
Google Scholar
[18]
I. Akin, E. Yilmaz, F. Sahin, O. Yucel, G. Goller, Effect of CeO2 addition on densification and microstructure of Al2O3-YSZ composites, Ceram. Int., 37, (2011), 3273 – 3280.
DOI: 10.1016/j.ceramint.2011.05.123
Google Scholar
[19]
T. Kosmac, R. Wagner, N. Claussen, X-Ray Determination of Transformation Depths in Ceramics Containing Tetragonal ZrO2, J. Am. Ceram. Soc., 64.
DOI: 10.1111/j.1151-2916.1981.tb10285.x
Google Scholar
[4]
(1981) C72-3.
Google Scholar
[20]
P.M. Kelly, L.R.F. Rose, The martensitic transformation of ceramics – its role in transformation toughening, Progr. Mat. Sci., 67, (2002) 463-557.
DOI: 10.1016/s0079-6425(00)00005-0
Google Scholar
[21]
R.M. McMeeking, A.G. Evans, Mechanics of Transformation-Toughening in Brittle Materials, J. Am. Ceram. Soc., 65 (5), (1982) 242-46.
Google Scholar
[22]
M.H. He, J.W. Hutchinson, Kinking of a crack out of an interface, Transactions of the ASME.
Google Scholar
[56]
270-278, (1989).
Google Scholar