Development of Highly Dispersed Hybrid Nanoalumina with the Sol-Gel Method

Article Preview

Abstract:

A hybrid sol-gel method was employed to develop a uniform and highly dispersed alumina nanopowder in the presence of hyperbranched dendritic poly(ethylene)imine (PEI) acting as template material and complexation agent for aluminium ions. For this purpose, the hydrolysis and polycondensation reactions followed the complexation reaction between the Al(NO3)3 precursor and PEI, whereas ammonium polymethacrylate was added to improve the powder dispersion. The as-formed nanopowder was characterized before and after calcination studies carried out in the temperature range 100-1200 °C. For this purpose Scanning Electron Microscopy (SEM), Field Emission SEM, Transmission Electron Microscopy (TEM), X Ray Diffraction (XRD), Fourier Transform Infrared Spectroscopy (FTIR), Thermogravimetric and Differential Thermal Analysis (TG-DTA), N2 porosimetry and ζ-potential measurements at different pH were carried out. The analysis confirmed the successful formation of a boehmite-PEI hybrid material of uniform tiny spheroid crystals (~ 1-2 nm) and small agglomerates. The boehmite phase is kept up to 300 °C, whereas after calcination at 600 °C a stabilized γ-alumina powder of high surface area and crystal sizes around 2-5 nm results. This phase is quite stable being kept even after calcination at 1000 °C. The transformation to the stable α-alumina phase is completed at 1100 °C leading to an easily dispersed nanopowder with crystal sizes ranging between 5-25 nm.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

48-53

Citation:

Online since:

October 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S. P. Bardakhanov. A. V. Kim. V. I. Lysenko, A. V. Nomoev, D. Yu. Trufanov, M. D. Buyantuev, D. Zh. Bazarova, Inorg. Mater., Vol. 45, No. 3, (2009), pp.335-339.

DOI: 10.1134/s0020168509030200

Google Scholar

[2] G. Schinkel, I. Garm, B. Frank, U. Gernert, H. Schubert, R. Schomacker, Mater. Chem. Phys. 111 (2008), pp.570-577.

Google Scholar

[3] J.R. Groza, R. J. Dowding, NanoStruct. Mat., 7 (1996), pp.749-768.

Google Scholar

[4] P. Bowen, C. Carry, Powder Technology, 128 (2002), pp.248-255.

Google Scholar

[5] Jon Binner, Ketharam Annapoorani, Anish Paul, Isabel Santacruz, Bala Vaidhyanathan, Journal of the European Ceramic Society, 28 (2008) 973–977.

DOI: 10.1016/j.jeurceramsoc.2007.09.002

Google Scholar

[6] H. Lu, H. i Sun, C. Chen, R. Zhang, D. Yang, X. Hu, Mater. Sci. Eng. A 426 (2006), pp.181-186.

Google Scholar

[7] C. Brechignac P. Houdy M. Lahmani (Eds. ), Nanomaterials and Nanochemistry, 2006 Editions Belin, France, chapter 1 pp.3-32.

Google Scholar

[8] Paul Bowen, Claude Carry, Powder Technology 128 (2002) 248– 255.

Google Scholar

[9] Jean-Romain Viguie, Joachim Sukmanowski, Bengt Nolting, Francois-Xavier Royer, Colloids and Surfaces A: Physicochem. Eng. Aspects 302 (2007) 269–275.

Google Scholar

[10] J. Chandradass, M. Balasubramanian, Dong-sik Bae, Ki Hyeon Kim. Journal of Alloys and Compounds 479 (2009) 363–367.

Google Scholar

[11] Azade Yelten, Suat Yilmaz, Faik N. Oktar. Ceramics International, 38 (2012) 2659–2665.

Google Scholar

[12] Michael Arkas, Dimitris Tsiourvas. Journal of Hazardous Materials, 170 (2009) 35–42.

Google Scholar

[13] A. Ananth, G. Arthanareeswaran, Huanting Wang. Desalination, 287 (2012) 61–70.

Google Scholar

[14] Sedigheh Joughehdousta, Aliasghar Behnamghader, Mohammad Imani, Morteza Daliri, Azadehsadat Hashemi Doulabi, Ebrahim Jabbarib. Ceramics International, 39 (2013) 209–218.

Google Scholar

[15] Feng-hua Su, Zhao-zhu Zhang, Wei-min Liu Wear 265 (2008) 311–318.

Google Scholar

[16] Daniela C.L. Vasconcelos, Eduardo H.M. Nunes, Wander L. Vasconcelos Journal of Non-Crystalline Solids 358 (2012) 1374–1379.

DOI: 10.1016/j.jnoncrysol.2012.03.017

Google Scholar

[17] Dharmendra Kumar Shukla, Subramanyam V. Kasisomayajula, Venkitanarayanan Parameswaran Composites Science and Technology 68 (2008) 3055–3063.

DOI: 10.1016/j.compscitech.2008.06.025

Google Scholar

[18] F.C. Meunier, J.P. Breen, V. Zuzaniuk, M. Osson, J.R.H. Ross, J. Catal. 187 (1999) 493-404.

Google Scholar

[19] Colloids and Surfaces A: Physicochem. Eng. Aspects 436 (2013) 489– 494.

Google Scholar

[20] P. Srinivasa Rao, B. Smitha, S. Sridhar, A. Krishnaiah Vacuum 81 (2006) 299–306.

Google Scholar

[21] Abbas Khaleel, Shamsa Al-Mansouri, Colloids and Surfaces A: Physicochem. Eng. Aspects 369 (2010) 272–280.

Google Scholar

[22] Masakazu Kawashita , Ayumi Kamitani, Toshiki Miyazaki, Naoko Matsui, Zhixia Li, Hiroyasu Kanetaka, Masami Hashimoto, Materials Science and Engineering C 32 (2012) 2617–2622.

DOI: 10.1016/j.msec.2012.08.013

Google Scholar

[23] Jingxian Zhang, Qiang Xua, Feng Ye, Qingling Lin, Dongliang Jiang, Mikio Iwasa, Colloids and Surfaces A: Physicochem. Eng. Aspects 276 (2006) 168–175.

Google Scholar