Segregation and Color Change on (Cr,Ca) Codoped Nanocrystalline Tin Dioxide

Article Preview

Abstract:

The intense violet color and the high catalyst activity of Cr-doped SnO2 nanoparticles have motivated several authors to understand the solid solution formation and the oxidation state of chromium ions after synthesis. Recent work has demonstrated the ability of surface segregation in chromium-doped tin oxide system but the oxidation state is still misunderstood. Calcium oxide addition changes the color of (Cr,Ca) codoped nanocrystalline tin dioxide pigments from violet to yellow simultaneously to a high particle size stabilization demonstrating that co-segregation could be associated to color change due to chemical environment change of chromium ions and specific surface area increase. High solubility of Cr+6 and Ca+2 allow us to determine the surface excess of both cations by ionic chromatography and the color change after surface solubilization.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

73-78

Citation:

Online since:

October 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] P.G. Harrison, N.C. Lloyd, W. Daniell, C. Bailey, W. Azelee, Evolution of microstructure during the thermal activation of chromium-promoted tin(IV) oxide catalysts: An FT-IR, FT-Raman, XRD, TEM, and XANES/EXAFS study, Chemistry of Materials 11 (4) (1999).

DOI: 10.1021/cm980347p

Google Scholar

[2] P.G. Harrison, N.C. Lloyd, W. Daniell, I.K. Ball, C. Bailey, W. Azelee, Evolution of microstructure during the thermal activation of copper(II) and chromium(III) doubly promoted tin(IV) oxide catalysts: An FT-IR, XRD, TEM, XANES/EXAFS, and XPS study, Chemistry of Materials 12 (10) (2000).

DOI: 10.1021/cm001126y

Google Scholar

[3] P.G. Harrison, N.C. Lloyd, W. Daniell, The nature of the chromium species formed during the thermal activation of chromium-promoted tin(IV) oxide catalysts: An EPR and XPS study, J. Phys. Chem. B 102 (52) (1998) 10672-10679.

DOI: 10.1021/jp9822135

Google Scholar

[4] R.H.R. Castro, J. Rufner, P. Hidalgo, D. Gouvea, J.A.H. Coaquira, K. van Benthem, Surface Segregation in Chromium-Doped Nanocrystalline Tin Dioxide Pigments, Journal of the American Ceramic Society 95 (1) (2012) 170-176.

DOI: 10.1111/j.1551-2916.2011.04868.x

Google Scholar

[5] M. Kato, H. Unuma, M. Takakashi, Color modification of chromium-tin pink pigment by substitution of Ti for Sn, Journal of the Ceramic Society of Japan 108 (5) (2000) 478-481.

DOI: 10.2109/jcersj.108.1257_478

Google Scholar

[6] E. Lopez-Navarrete, A.R. Gonzalez-Elipe, M. Ocana, Non-conventional synthesis of Cr-doped SnO2 pigments, Ceramics International 29 (4) (2003) 385-392.

DOI: 10.1016/s0272-8842(02)00149-9

Google Scholar

[7] L. Jiang, P.J. Wang, C.W. Zhang, X.Y. Feng, Y. Lu, G.L. Zhang, Electronic structure and optical properties of Cr doped SnO2 superlattice, Acta Physica Sinica 60 (9) (2011).

DOI: 10.7498/aps.60.093101

Google Scholar

[8] M.A. Tena, S. Meseguer, C. Gargori, A. Fores, J.A. Badenes, G. Monros, Study of Cr-SnO2 ceramic pigment and of Ti/Sn ratio on formation and coloration of these materials, Journal of the European Ceramic Society 27 (1) (2007) 215-221.

DOI: 10.1016/j.jeurceramsoc.2006.04.183

Google Scholar

[9] E. Lopez-Navarrete, A. Caballero, V.M. Orera, F.J. Lazaro, M. Ocana, Oxidation state and localization of chromium ions in Cr-doped cassiterite and Cr-doped malayaite, Acta Materialia 51 (8) (2003) 2371-2381.

DOI: 10.1016/s1359-6454(03)00044-2

Google Scholar

[10] F. Solymosi, J. Kiss, ADSORPTION AND REDUCTION OF NO ON TIN(IV) OXIDE DOPED WITH CHROMIUM(III) OXIDE, Journal of Catalysis 54 (1) (1978) 42-51.

DOI: 10.1016/0021-9517(78)90025-8

Google Scholar

[11] C.N. Xu, J. Tamaki, N. Miura, N. Yamazoe, Stabilization of SnO2 Ultrafine Particles by Additives, J Mater Sci 27 (4) (1992) 963-971.

DOI: 10.1007/bf01197649

Google Scholar

[12] D. Szczuko, J. Werner, S. Oswald, G. Behr, K. Wetzig, XPS investigations of surface segregation of doping elements in SnO2, Applied Surface Science 179 (1-4) (2001) 301-306.

DOI: 10.1016/s0169-4332(01)00298-7

Google Scholar

[13] R.H.R. Castro, P. Hidalgo, R. Muccillo, D. Gouvea, Microstructure and structure of NiO-SnO2 and Fe2O3-SnO2 systems, Appl. Surf. Sci. 214 (1-4) (2003) 172-177.

DOI: 10.1016/s0169-4332(03)00274-5

Google Scholar

[14] D. Gouvea, G.J. Pereira, L. Gengembre, M.C. Steil, P. Roussel, A. Rubbens, P. Hidalgo, R.H.R. Castro, Quantification of MgO surface excess on the SnO2 nanoparticles and relationship with nanostability and growth, Appl Surf Sci 257 (9) (2011).

DOI: 10.1016/j.apsusc.2014.05.017

Google Scholar

[15] P.A. Lessing, Mixed-Cation Oxide Powders Via Polymeric Precursors, Am Ceram Soc Bull 68 (5) (1989) 1002-1007.

Google Scholar

[16] M.P. Pechini (Sprague Electric Co), (1967).

Google Scholar

[17] D. Gouvea, A. Smith, J.P. Bonnet, Manganese segregation on the surface of SnO2 based powders, Eur. J. Solid State Inorg. Chem. 33 (10) (1996) 1015-1023.

Google Scholar

[18] G.J. Pereira, R.H.R. Castro, P. Hidalgo, D. Gouvea, Surface segregation of additives on SnO2 based powders and their relationship with macroscopic properties, Appl. Surf. Sci. 195 (1-4) (2002) 277-283.

DOI: 10.1016/s0169-4332(02)00567-6

Google Scholar

[19] D. Gouvêa, G.J. Pereira, L. Gengembre, M.C. Steil, P. Roussel, A. Rubbens, P. Hidalgo, R.H.R. Castro, Quantification of MgO surface excess on the SnO2 nanoparticles and relationship with nanostability and growth, Appl. Surf. Sci. 257 (9) (2011).

DOI: 10.1016/j.apsusc.2014.05.017

Google Scholar

[20] J.H. Wang, G.H. Peng, Y.Z. Guo, X.K. Yang, XPS investigation of segregation of sb in SnO2 powders, Journal of Wuhan University of Technology-Materials Science Edition 23 (1) (2008) 95-99.

DOI: 10.1007/s11595-006-1095-9

Google Scholar

[21] S. Oswald, G. Behr, D. Dobler, J. Werner, K. Wetzig, W. Arabczyk, Specific properties of fine SnO2 powders connected with surface segregation, Analytical and Bioanalytical Chemistry 378 (2) (2004) 411-415.

DOI: 10.1007/s00216-003-2277-3

Google Scholar

[22] J.P. Bonnet, N. Dolet, J.M. Heintz, Low-temperature sintering of 0. 99 SnO2 0. 01 CuO: Influence of copper surface diffusion, Journal of the European Ceramic Society 16 (11) (1996) 1163-1169.

DOI: 10.1016/0955-2219(96)00046-5

Google Scholar

[23] J. Nowotny, INTERFACE DEFECT CHEMISTRY OF OXIDE CERAMIC MATERIALS - UNRESOLVED PROBLEMS, Solid State Ionics 49 (1991) 119-128.

DOI: 10.1016/0167-2738(91)90077-o

Google Scholar

[24] D. Cordischi, D. Gazzoli, M. Occhiuzzi, M. Valigi, Redox behavior of VIB transition metal ions in rutile TiO2 solid solutions: An XRD and EPR study, J. Solid State Chem. 152 (2) (2000) 412-420.

DOI: 10.1006/jssc.2000.8698

Google Scholar

[25] F. Brito, J. Ascanio, S. Mateo, C. Hernandez, L. Araujo, P. Gili, P. MartinZarza, S. Dominguez, A. Mederos, Equilibria of chromate(VI) species in acid medium and ab initio studies of these species, Polyhedron 16 (21) (1997) 3835-3846.

DOI: 10.1016/s0277-5387(97)00128-9

Google Scholar