Transparent Tetragonal Zirconia Ceramics by Colloidal Processing of Nanoparticle Suspension

Article Preview

Abstract:

Colloidal processing was applied to a commercial 5 vol% 3Y-ZrO2 nanosuspension with a particle size of 10-15 nm. The nanosuspension was concentrated by evaporation or by the newly developed method of osmotic dehydration. The viscosity and stability of concentrated suspensions were investigated. The concentrated nanosuspension prepared by osmotic dehydration was consolidated by centrifugation in non-porous moulds. The dried deposit had a relative density of 46% and pores ranged from 4 to 8 nm. This deposit was densified by pressureless presintering to closed porosity, followed by hot isostatic pressing in order to obtain transparent ceramics. After sintering, the tetragonal zirconia retained the nanocrystalline structure with an average grain size of 65 nm and an in-line transmission of 25 % (at 633 nm wavelength and 0.5 mm plate thickness).

You might also be interested in these eBooks

Info:

Periodical:

Pages:

85-90

Citation:

Online since:

October 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] G.C. Wei, Transparent ceramics for lighting, J. Eur. Ceram. Soc. 29 (2009) 237-244.

Google Scholar

[2] A. Krell, T. Hutzler, J. Klimke, Transmission physics and consequences for materials selection, manufacturing, and applications, J. Eur. Ceram. Soc. 29 (2009) 207-221.

DOI: 10.1016/j.jeurceramsoc.2008.03.025

Google Scholar

[3] U. Peuchert, Y. Okano, Y. Menke, S. Reichel, A. Ikesue, Transparent cubic-ZrO2 ceramics for application as optical lenses, J. Eur. Ceram. Soc. 29 (2009) 283-291.

DOI: 10.1016/j.jeurceramsoc.2008.03.028

Google Scholar

[4] V. Lupei, A. Lupei, A. Ikesue, Transparent polycrystalline ceramic laser materials, Opt. Mater. 30 (2008) 1781-1786.

DOI: 10.1016/j.optmat.2008.03.003

Google Scholar

[5] Y.M. Chen, R.J. Smales, K.H.K. Yip, W.J. Sung, Translucency and biaxial flexural strength of four ceramic core materials, Dent. Mater. 24 (2008) 1506-1511.

DOI: 10.1016/j.dental.2008.03.010

Google Scholar

[6] R.C. Garvie, R.H. Hannink, R.T. Pascoe, Ceramic stteel, Nature 258 (1975) 703-704.

DOI: 10.1038/258703a0

Google Scholar

[7] M. Trunec, Effect of grain size on mechanical properties of 3Y-TZP ceramics, Ceram. -Silik. 52 (2008) 165-171.

Google Scholar

[8] M. Trunec, Z. Chlup, Higher fracture toughness of tetragonal zirconia ceramics through nanocrystalline structure, Scr. Mater. 61 (2009) 56-59.

DOI: 10.1016/j.scriptamat.2009.03.019

Google Scholar

[9] J. Klimke, M. Trunec, A. Krell, Transparent tetragonal yttria-stabilized zirconia ceramics: Influence of scattering caused by birefringence, J. Am. Ceram. Soc. 94 (2011) 1850-1858.

DOI: 10.1111/j.1551-2916.2010.04322.x

Google Scholar

[10] F.F. Lange, Sinterability of agglomerated powders, J. Am. Ceram. Soc. 67 (1984) 83-89.

Google Scholar

[11] M. Trunec, K. Maca, Compaction and pressureless sintering of zirconia nanoparticles, J. Am. Ceram. Soc. 90 (2007) 2735-2740.

DOI: 10.1111/j.1551-2916.2007.01781.x

Google Scholar

[12] A. Krell, J. Klimke, T. Hutzler, Transparent compact ceramics: Inherent physical issues, Opt. Mater. 31 (2009) 1144-1150.

DOI: 10.1016/j.optmat.2008.12.009

Google Scholar

[13] J.A. Lewis, Colloidal processing of ceramics, J. Am. Ceram. Soc. 83 (2000) 2341-2359.

Google Scholar

[14] F.F. Lange, Powder processing science and technology for increased reliability, J. Am. Ceram. Soc. 72 (1989) 3-15.

Google Scholar

[15] I. Santacruz, K. Anapoorani, J. Binner, Preparation of high solids content nanozirconia suspensions, J. Am. Ceram. Soc. 91 (2008) 398-405.

DOI: 10.1111/j.1551-2916.2007.02164.x

Google Scholar

[16] M.I. Mendelson, Average grain size in polycrystalline ceramics, J. Am. Ceram. Soc. 52 (1969) 443-446.

Google Scholar

[17] W.M. Sigmund, N.S. Bell, L. Bergstrom, Novel powder-processing methods for advanced ceramics, J. Am. Ceram. Soc. 83 (2000) 1557-1574.

Google Scholar

[18] U. Anselmi-Tamburini, J.N. Woolman, Z.A. Munir, Transparent nanometric cubic and tetragonal zirconia obtained by high-pressure pulsed electric current sintering, Adv. Funct. Mater. 17 (2007) 3267-3273.

DOI: 10.1002/adfm.200600959

Google Scholar