Microwave Technique: An Innovated Method for Sintering β-Eucryptite Ceramic Materials

Article Preview

Abstract:

Microwave sintering has emerged in recent years as a new, fast, cheap and green technology for sintering a variety of materials. The main advantages of microwave heating can be summarized as follow: reduced processing times, energy costs and environmental benefits. Nevertheless, understanding how this specific heating drives to obtain ceramic materials with a combination of unique, structural and functional properties is the big challenge. The present work shows the different and improved properties achieved with β-eucryptite nanocomposite ceramic materials by microwave heating compared with the conventional method. Microcracking evolution in addition to the microstructure of the sintered materials along the several thermal cycles has been studied. Mechanical properties changes observed can be related to this process. Thus, the microwave technique is a promising tool for sintering new materials by controlling the composition of the phases, chemical reactivity and nanostructure, using up to 70% less energy in the whole sintering process than conventional heating. This technique becomes part of the new and innovative technologies "eco-green".

You might also be interested in these eBooks

Info:

Periodical:

Pages:

43-48

Citation:

Online since:

October 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] W. Höland, G. Beall, Glass Ceramic Technology, American Ceramic Society, Westerville, OH, (2002).

Google Scholar

[2] T. Ogiwara, Y. Noda, K. Shoji, O. Kimura, Low-Temperature sintering of high-strength β-eucryptite ceramics with low thermal expansion using Li2O-GeO2 as a sintering additive, J. Amer. Ceram. Soc. 94 (2011) 1427-1433.

DOI: 10.1111/j.1551-2916.2010.04279.x

Google Scholar

[3] A. Shyam, J. Muth, E. Lara-Curzio, Elastic properties of b-eucryptite in the glassy and microcracked crystalline states, Acta Mater. 60 (2012) 5867-5876.

DOI: 10.1016/j.actamat.2012.07.028

Google Scholar

[4] O. García-Moreno, A. Fernández, S. Khainakov, R. Torrecillas, Negative thermal expansion of lithium aluminosilicate ceramics at cryogenic temperatures, Scripta Mater. 63 (2010) 170-173.

DOI: 10.1016/j.scriptamat.2010.03.047

Google Scholar

[5] P.J. Plaza-Gonzalez, A.J. Canos, J.M. Catala-Civera, J.D. Gutierrez-Cano, Complex impedance measurement system around 2. 45 GHz in a waveguide portable system, Proceedings of the 13th International Conference on Microwave and RF Heating. Toulouse 447-450 (2011).

Google Scholar

[6] W.C. Oliver, G.M. Pharr, An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments, J. Mater. Res. 19 (1992) 1564-1583.

DOI: 10.1557/jmr.1992.1564

Google Scholar

[7] R. Benavente, A. Borrell, M.D. Salvador, O. Garcia-Moreno, F.L. Peñaranda-Foix, J.M. Catala-Civera, Fabrication of near-zero thermal expansion of fully dense β-eucryptite ceramics by microwave sintering, Ceram. Inter. 40 (2014) 93-941.

DOI: 10.1016/j.ceramint.2013.06.089

Google Scholar

[8] R. L. Coble, Sintering crystalline solid I. Intermediate and final state diffusion models, J. Appl. Phys. 32 (1961) 787-793.

DOI: 10.1063/1.1736107

Google Scholar

[9] A. Pelletant, H. Reveron, J. Chêvalier, G. Fantozzi, L. Blanchard, F. Guinot, F. Falzon, Grain size dependence of pure β-eucryptite thermal expansion coefficient, Materials Letters, 66 (2012) 68-71.

DOI: 10.1016/j.matlet.2011.07.107

Google Scholar

[10] G. Bruno, V.O. Garlea, J. Muth, A.M. Efremov, T.R. Watkins, A. Shyam, Microstrain temperature evolution in β-eucryptite ceramics: Measurement and model, Acta Mater. 60 (2012) 4982-4996.

DOI: 10.1016/j.actamat.2012.04.033

Google Scholar

[11] S. Ramalingam, I.E. Reimanis, Effect of Doping on the Thermal Expansion of β-Eucryptite Prepared by Sol-Gel Methods, J. Amer. Ceram. Soc. 95 (2012) 2939-2943.

DOI: 10.1111/j.1551-2916.2012.05338.x

Google Scholar

[12] J.S. Moya, A.G. Verduch, M. Hortal, Thermal expansion of β-eucryptite solid solution, Trans. Brit. Ceram. Soc. 76 (1974) 177-178.

Google Scholar

[13] I.E. Reimanis, C. Seick, K. Fitzpatrick, E.R. Fuller and S. Landin, Spontaneous Ejecta from β-Eucryptite Composites, J. Amer. Ceram. Soc. 90 (2007) 2497-2501.

DOI: 10.1111/j.1551-2916.2007.01744.x

Google Scholar