[1]
S. Maensiri, P. Laokul, J. Klinkaewnarong, V. Amornkitbamrung. Carbon nanofiber-reinforced alumina nanocomposites: Fabrication and mechanical properties. Mater. Sci. Eng. A, 447 (2007) 44–50.
DOI: 10.1016/j.msea.2006.08.009
Google Scholar
[2]
J. Liu, H. Yan, M.J. Reece, K. Jiang, Toughening of zirconia/alumina composites by the addition of graphene platelets, Journal of the European Ceramic Society, 32 (2012) 4185–4193.
DOI: 10.1016/j.jeurceramsoc.2012.07.007
Google Scholar
[3]
N. Voltsihhin, M. Rodríguez, I. Hussainova, M. Aghayan, Low temperature, spark plasma sintering behavior of zirconia added by a novel type of alumina nanofibers, Ceramics International, 40, 5 (2014) 7235–7244.
DOI: 10.1016/j.ceramint.2013.12.063
Google Scholar
[4]
L.S. Walker, V.R. Marotto, M.A. Rafiee, N. Koratkar, E.L. Corral, Toughening in graphene ceramic composites, AS Nano, 5, 4 (2001) 3182 – 3190.
DOI: 10.1021/nn200319d
Google Scholar
[5]
H. Porwal, Peter Tatarko, Salvatore Grasso, Jibran Khaliq, Ivo Dlouhy, Mike J. Reece, Graphene reinforced alumina nano-composites. Carbon, 64 (2013) 359–369.
DOI: 10.1016/j.carbon.2013.07.086
Google Scholar
[6]
J. Wang, Zhiqiang Li, Genlian Fan, Huanhuan Pan, Zhixin Chen, Di Zhang, Reinforcement with graphene nanosheets in aluminum matrix composites, Scipta Materialia 66, 8 (2012) 594 - 597.
DOI: 10.1016/j.scriptamat.2012.01.012
Google Scholar
[7]
A. Centeno, V.G. Rocha, B. Alonso, A. Fernández, C.F. Gutierrez-Gonzalez, R. Torrecillas, A. Zurutuza, Graphene for tough and electroconductive alumina ceramics, 48, 6 (2010) 1743 – 1749.
DOI: 10.1016/j.jeurceramsoc.2013.07.007
Google Scholar
[8]
Y. Fan, et al. Preparation and electrical properties of graphene nanosheet/Al2O3 composites. Carbon N. Y., 2010, 48, 1743–1749.
Google Scholar
[9]
K. Wang, Y. Wang, Z. Fan, J. Yan, T. Wei, Preparation of graphene nanosheet/alumina composites by spark plasma sintering. Mater. Res. Bull., 2011, 46, 315–318.
DOI: 10.1016/j.materresbull.2010.11.005
Google Scholar
[10]
A. Duszova, J. Dusza, K. Tomasek, J. Morgiel, G. Blugand and J. Kuebler, Zirconia/carbon nanofiber composite, Scripta Materialia, 58 (2008) 520–523.
DOI: 10.1016/j.scriptamat.2007.11.002
Google Scholar
[11]
Yuchi Fan , Wan Jiang , and Akira Kawasaki, Highly Conductive Few-Layer Graphene/Al2O3 Nanocomposites with Tunable Charge Carrier Type. Advanced Functional Materials, 22, 18 (2012) 3882–3889.
DOI: 10.1002/adfm.201200632
Google Scholar
[12]
M. Aghayan, I. Hussainova, M. Gasik, M. Kutuzov, M. Friman, Coupled thermal analysis of novel alumina nanofibers with ultrahigh aspect ratio, Thermochimica Acta, 574 (2013) 140– 144.
DOI: 10.1016/j.tca.2013.10.010
Google Scholar
[13]
A.C. Ferrari and D.M. Basko, Raman spectroscopy as a versatile tool for studying the properties of graphene. Nature Nanotechnology, 8 (2013) 235- 246.
DOI: 10.1038/nnano.2013.46
Google Scholar
[14]
M.S. Dresselhaus, A. Jorio, M. Hoffmann, G. Dresselhaus, R. Saito, Perspectives on carbon nanotubes and graphene Raman spectroscopy. Nano Letters 10, 3 (2010) 751 – 768.
DOI: 10.1021/nl904286r
Google Scholar
[15]
A.G. Evans. Perspective on the development of high-toughness ceramics. J Am Ceram Soc, 73, 2, (1990) 187–206.
Google Scholar