Addition of Ammonium Molybdate in Geopolymer Formulation

Article Preview

Abstract:

Geopolymers are inorganic materials obtained by the alkaline activation of aluminosilicate sources. The ammonium molybdate could be used as a complexant for silica in order to complex the siliceous species in the alkaline solution. According to this, the aim of this work is to control the siliceous species and to understand the role of ammonium molybdate as a complexing agent acting on the formation of the different networks. To do this, additions of ammonium molybdate (up to 0.32% molar) in the silicate solution were realized along the formulation of geopolymer using two metakaolins. The results highlight that the addition of ammonium molybdate in geopolymer results in a decrease of the shrinkage at high temperature. Moreover, X-ray diffraction data and SEM after calcination show that geopolymers without ammonium molybdate form two phases (KAlSi2O6 and KAlSiO4) while with additions of molybdate, there were only the phase KAlSi2O6 associated with Al2O3 doped Mo and K2Mo2O7. Finally, SEM observations show that additions of ammonium molybdate seem to favor crystallization. The results allow to evidence the role of molybdate in the control of the polycondensation reaction in order to influence the formation of specific network

You might also be interested in these eBooks

Info:

Periodical:

Pages:

8-13

Citation:

Online since:

October 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A. Autef, E. Joussein, G. Gasgnier, S. Rossignol, Role of the silica source on the geopolymerization rate, J. of Non-Crystalline Solids, 358 (21) (2012) 2886-2893.

DOI: 10.1016/j.jnoncrysol.2012.07.015

Google Scholar

[2] J. Davidovits, Geopolymer: Chemistry and Applications, second ed., Institut géopolymère, St-Quentin, (2008).

Google Scholar

[3] A. Autef, Formulation géopolymère : influence des rapports molaires Si/K et Si/Al sur les réactions de polycondensation au sein de gels aluminosilicatés, PhD thesis, Université de Limoges, (2013).

Google Scholar

[4] E. Prud'homme, P. Michaud, E. Joussein, A. Smith, C. Peyratout, I. Sobrados, J. Sanz, S. Rossignol, Geomaterial foams: Role assignment of raw materials in the network formation, J. of Sol-Gel Science and Technology, 61 (2) (2012) 436-448.

DOI: 10.1007/s10971-011-2644-z

Google Scholar

[5] A. Autef, E. Joussein, A. Poulesquen, G. Gasgnier, S. Pronier, I. Sobrados, J. Sanz, S. Rossignol, Influence of metakaolin purities on potassium geopolymer formulation: the existence of several networks, J. of Colloïd and Interface Science, 408 (1) (2013).

DOI: 10.1016/j.jcis.2013.07.024

Google Scholar

[6] P. He, D. Jia, M. Wang, Y. Zhou, Thermal evolution and crystallization kinetics of potassium-based geopolymer, Ceramics International, 37 (1) (2011) 59. 63.

DOI: 10.1016/j.ceramint.2010.08.008

Google Scholar

[7] F. Parmentier, Sur les silicomolybdates, Annales scientifiques de l'E.N.S., 2ème série, 11 (1882) 187-218.

DOI: 10.24033/asens.214

Google Scholar

[8] V.W. Truesdale, C.J. Smith, The formation of molybdosilicic acids from mixed solutions of molybdate and silicate, The Analyst, 100 (1975) 203-212.

DOI: 10.1039/an9750000203

Google Scholar

[9] P. Sarrazin, B. Mouchel, S. Kasztelan, 95Mo NMR study of the interaction of heptamolybdate solutions with alumina and silica, J. Phys. Chem, 93 (1989) 904-908.

DOI: 10.1021/j100339a069

Google Scholar

[10] J-E.A. Otterstedt, M. Ghuzel, J.P. Sterte, Colloidal components in solutions of alkali silicates, J. of Colloid and Interface Science, 115 (1) (1987) 95-103.

DOI: 10.1016/0021-9797(87)90012-9

Google Scholar

[11] C.H. Rüscher, E. Mielcarek, Weakening of alkali-activated metakaolin during aging investigated by the molybdate method and infrared absorption spectroscopy, J. of the American Ceramic Society, 93 (9) (2010) 2585-2590.

DOI: 10.1111/j.1551-2916.2010.03773.x

Google Scholar

[12] C. Cousi, F. Bart, J. Phalippou, Phase separation and crystallization induced by adding molybdenum and phosphorus to a soda-lime-silica glass, Glass Technology, 45 (2) (2004) 65-67.

Google Scholar

[13] G-Q. Zhang, J. Guo, L. He, D. Zhou, H. Wang, J. Koruza, M. Kosec, Preparation and microwave dielectric properties of ultra-low temperature sintering ceramics in K2O-MoO3 binary system, J. of the American Ceramic Society, 97 (1) (2014) 241-245.

DOI: 10.1111/jace.12646

Google Scholar

[14] J.L. Provis, R.M. Harrex, S.A. Bernal, P. Duxson, J.S.J. Deventer, Dilatometry of geopolymers as a means of selecting desirable fly ash sources, J. of Non-Crystalline Solids, 358 (16) (2012) 1930-(1937).

DOI: 10.1016/j.jnoncrysol.2012.06.001

Google Scholar

[15] T. Coradin, D. Eglin, J. Livage, The silicomolybdic acid spectrophotometric method and its application to silicate/biopolymer interaction studies, Spectroscopy, 18 (4) (2004) 567-576.

DOI: 10.1155/2004/356207

Google Scholar

[16] J. Dou, H.C. Zeng, Targeted synthesis of silicomolybdic acid (Keggin acid) inside mesoporous silica hollow spheres for Friedel-Crafts Alkylation, J. of the American Chemical Society, 134 (39) (2012) 16235-16246.

DOI: 10.1021/ja3055723

Google Scholar

[17] L. Bi, E. Wang, R. Huang, Synthesis, properties and crystal structure of a novel organic-inorganic salt of 12-silicomolybdate, (C2H5NO2)3. 5H4SiMo12O40∙8. 5H2O, J. of Molecular Structure, 569 (1-3) (2001) 81-88.

DOI: 10.1016/s0022-2860(01)00435-5

Google Scholar