Antibacterial and Self-Cleaning Coatings for Silicate Ceramics: A Review

Article Preview

Abstract:

The development of advanced materials is increasingly leading to integration of functions into materials and components. This drive in technological innovation is strongly felt in many traditional fields, like textiles or ceramics. Over the last twenty years, the so-called "traditional" ceramics industry for tile production has undergone a profound technological reorganization, both in production technologies and automation of the different production phases, but new products and possible new applications are still needed, thereby opening up new markets. In this paper a critical review of the industrial and scientific effort to obtain antibacterial and self-cleaning coating for ceramic tiles is reported. The main patents and scientific papers in the field are reported as well as some final results obtained by the authors on the evaluation of the durability of photocatalytic coating deposited on industrial ceramic tiles.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

90-99

Citation:

Online since:

October 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] FINE PORCELAINIZED STONEWARE, ed. SACMI in web site www. sacmi. com.

Google Scholar

[2] T. Manfredini, G.C. Pellacani, M. Romagnoli, L. Pennisi, Porcelainized stoneware tile, Am. Ceram. Soc. Bull. 74 (1995) 76.

Google Scholar

[3] C. Leonelli, F. Bondioli, P. Veronesi, M. Romagnoli, T. Manfredini, G.C. Pellacani, V. Cannillo, Enhancing the mechanical properties of porcelain stoneware tiles: a microstructural approach, Euro. Ceram. Soc. 21 (2001) 785.

DOI: 10.1016/s0955-2219(00)00266-1

Google Scholar

[4] W. Barthlott, C. Neinhuis, Purity of the sacred lotus, or escape from contamination in biological surfaces, Planta, 202 (1997) 1.

DOI: 10.1007/s004250050096

Google Scholar

[5] A. Berto, Ceramic tiles: Above and beyond traditional applications, J. Euro. Ceram. Soc. 27 (2007) 607-613.

Google Scholar

[6] F. Bondioli, M. Dinelli, R. Giovanardi, M. Giorgi, Functionalization of ceramic tile surface by soluble salts addition: Part II. Titanium and silver addition, J. Euro. Ceram. Soc. 30 (2010) 1873-1878.

DOI: 10.1016/j.jeurceramsoc.2010.03.008

Google Scholar

[7] F. Bondioli, T. Manfredini, M. Giorgi, G. Vignali, Functionalization of ceramic tile surface by soluble salts addition: Part I, J. Euro. Ceram. Soc. 30 (2010) 11-16.

DOI: 10.1016/j.jeurceramsoc.2009.08.012

Google Scholar

[8] F. Bondioli, R. Taurino, AM. Ferrari, Functionalization of ceramic tile surface by sol-gel technique, J Colloid Interface Sci. 334 (2009) 195-201.

DOI: 10.1016/j.jcis.2009.02.054

Google Scholar

[9] A. Fujishima and K. Honda, Electrochemical Photolysis of Water at a Semiconductor Electrode, Nature, 238 (1972) 37.

DOI: 10.1038/238037a0

Google Scholar

[10] J. Zhao and X.D. Yang, Photocatalytic oxidation for indoor air purification: a literature review, Building and Environment, 38.

Google Scholar

[5] (2003) 645-654.

Google Scholar

[11] M.V. Diamanti, M. Ormellese, and M. Pedeferri, Characterization of photocatalytic and superhydrophilic properties of mortars containing titanium dioxide, Cement and Concrete Research, 38.

DOI: 10.1016/j.cemconres.2008.07.003

Google Scholar

[11] (2008) 1349-1353.

Google Scholar

[12] X.J. Zhao, Development of multifunctional photoactive self-cleaning glasses, J. Non-Crystalline Solids, 354[12-13] (2008) 1424-1433.

DOI: 10.1016/j.jnoncrysol.2006.10.093

Google Scholar

[13] E. Quagliarini, F. Bondioli, G.B. Goffredo, A. Licciulli, P. Munafò, Smart surfaces for architectural heritage: preliminary results about the application of Tio2-based coatings on travertine, J. Cultural Heritage, 13.

DOI: 10.1016/j.culher.2011.10.002

Google Scholar

[2] (2012) 204-209.

Google Scholar

[14] J. Maatta, Effects of UV-radiation on the cleanability of titanium dioxide-coated glazed ceramic tiles, J. Euro. Ceram. Soc. 27.

Google Scholar

[16] (2007) 4569-4574.

Google Scholar

[15] M. Raimondo, G. Guarini, C. Zanelli, F. Marani, L. Fossa, M. Dondi, Printing nano TiO2 on large-sized building materials: Technologies, surface modifications and functional behavior, Ceramics International 38 (2012) 4685–4693.

DOI: 10.1016/j.ceramint.2012.02.051

Google Scholar

[16] R.A. Spurr, H. Myers, Quantitative analysis of anatase–rutile mixtures with an X-ray diffractometer, Anal. Chem. 29 (1957) 760–767.

DOI: 10.1021/ac60125a006

Google Scholar

[17] P.I. Gouma, M.J. Mills, Anatase-to-rutile transformation in titania powders, J. Am. Ceram. Soc. 84 (2001) 619–622.

DOI: 10.1111/j.1151-2916.2001.tb00709.x

Google Scholar

[18] H. Zhang, J.F. Banfield, Phase transformation of nanocrystalline anatase to-rutile via combined interface and surface nucleation, J. Mater. Res. 15 (2000) 437–448.

DOI: 10.1557/jmr.2000.0067

Google Scholar

[19] M. Piispanen, J. Matta, S. Areva, A.M. Sjoberg, M. Hupa, L. Hupa, Chemical resistance and cleaning properties of coated glazed surfaces, J. Eur. Ceram. Soc. 29 (2009) 1855–1860.

DOI: 10.1016/j.jeurceramsoc.2008.11.007

Google Scholar

[20] A. Chabas, T. Lombardo, H. Cachier, M.H. Pertuisot, K. Oikonomou, R. Falcone, M. Verità, F. Geotti-Bianchini, Self cleaning versus float glass in urban atmosphere, Glass Technol. -Eur. J. Glass Sci. Technol. Part A 50 (2009) 139–142.

DOI: 10.1016/j.buildenv.2007.12.008

Google Scholar

[21] J. Maatta, M. Piispanen, HR. Kymalainen, A. Uusi-Rauva, K. -R. Hurme, S. Areva, AM. Sjoberg, L. Hupa, Effects of UV-radiation on the cleanability of titanium dioxide-coated glazed ceramic tiles, J Euro Ceram Soc 27 (2007) 4569–4574.

DOI: 10.1016/j.jeurceramsoc.2007.03.026

Google Scholar

[22] P. Zhang, J Tian, R. Xu, G. Ma, Hydrophilicity, photocatalytic activity and stability of tetraethyl orthosilicate modified TiO2 film on glazed ceramic surface, Applied Surface Science 266 (2013) 141– 147.

DOI: 10.1016/j.apsusc.2012.11.117

Google Scholar

[23] M.P. Seabra, R.R. Pires, J.A. Labrincha, Ceramic tiles for photodegradation of Orange II solutions, Chemical Engineering Journal 171 (2011) 692– 702.

DOI: 10.1016/j.cej.2011.04.028

Google Scholar

[24] V. Petrovic, V. Ducman, SD. Skapin, Determination of the photocatalytic efficiency of TiO2 coatings on ceramic tiles by monitoring the photodegradation of organic dyes, Ceramics International 38 (2012) 1611–1616.

DOI: 10.1016/j.ceramint.2011.09.050

Google Scholar

[25] E. Rego, J. Marto, P. S. Marcos, J.A. Labrincha, Decolouration of Orange II solutions by TiO2 and ZnO active layers screen-printed on ceramic tiles under sunlight irradiation, Applied Catalysis A: General 355 (2009) 109–114.

DOI: 10.1016/j.apcata.2008.12.005

Google Scholar

[26] P. S. Marcos, J. Marto, T. Trindade, J.A. Labrincha, Screen-printing of TiO2 photocatalytic layers on glazed ceramic tiles, Journal of Photochemistry and Photobiology A: Chemistry 197 (2008) 125–131.

DOI: 10.1016/j.jphotochem.2007.12.017

Google Scholar

[27] M. Raimondo, G. Guarini, C. Zanelli, F. Marani, L. Fossa, M. Dondi, Printing nano TiO2 on large-sized building materials: Technologies, surface modifications and functional behaviour, Ceramics International 38 (2012) 4685–4693.

DOI: 10.1016/j.ceramint.2012.02.051

Google Scholar

[28] I. Fasaki, K. Siamos, M. Arin, P. Lommens, I. Van Driessche, S.C. Hopkins, B.A. Glowacki, I. Arabatzis, Ultrasound assisted preparation of stable water-based nanocrystalline TiO2 suspensions for photocatalytic applications of inkjet-printed films, Applied Catalysis A: General 411– 412 (2012).

DOI: 10.1016/j.apcata.2011.10.020

Google Scholar

[29] J. Szczawiński, H. Tomaszewski, A. Jackowska-Tracz, M.E. Szczawińska, Survival of Staphylococcus aureus exposed to UV radiation on the surface of ceramic tiles coated with TiO2, Polish Journal of Veterinary Sciences Vol. 14, No. 1 (2011), 41-46.

DOI: 10.2478/v10181-011-0006-y

Google Scholar

[30] M. Anpo, Use of visible light. Second-generation titanium oxide photocatalysts prepared by the application of an advanced metal ion-implantation method. Pure Appl Chem, 72 (2000) 1787-1792.

DOI: 10.1351/pac200072091787

Google Scholar

[31] H. Yamashita, M. Harada, J. Misaka, M. Takeuchi, K. Ikeue, M. Anpo, Degradation of propanol diluted in water under visible light irradiation using metal ion-implanted titanium dioxide photocatalysts, J Photochem Photobiol A, 148 (2002) 257-261.

DOI: 10.1016/s1010-6030(02)00051-5

Google Scholar

[32] J. Zhu, W. Zheng, B. He, J. Zhang, M- Anpo, Characterization of Fe-TiO2 photocatalysts synthesized by hydrothermal method and their photocatalytic reactivity for degradation of XRG dye diluted in water, J Mol Catal A, 216 (2004) 35-43.

DOI: 10.1016/j.molcata.2004.01.008

Google Scholar

[33] JC-S Wu, CH Chen, A visible-light response vanadium-doped titania nanocatalyst by sol-gel method, J Photochem Photobiol A, 163 (2004) 509-515.

DOI: 10.1016/j.jphotochem.2004.02.007

Google Scholar

[34] Sakthivel S, Kisch H. Daylight photocatalysts by carbon-modified titanium dioxide. Angew Chem Int Ed 2003; 42: 4908-4911.

DOI: 10.1002/anie.200351577

Google Scholar

[35] Umebabayashi T, Yamaki T, Itoh H, Asai K. Band gap narrowing of titanium dioxide by sulfur doping. Appl Phys Lett, 81 (2002) 454-456.

DOI: 10.1063/1.1493647

Google Scholar

[36] Moon SC, Mametsuka H, Tabata S, Suzuki E. Photocatalytic production of hydrogen from water using TiO2 and B/TiO2. Catal Today 2000; 58: 125-132.

DOI: 10.1016/s0920-5861(00)00247-9

Google Scholar

[37] Yu JC, Zhang L, Zheng Z, Zhao J. Synthesis and characterization of phosphated mesoporous ti37nium dioxide with high photocatalytic activity. Chem Mater 2003; 15: 2280 -2286.

DOI: 10.1021/cm0340781

Google Scholar

[38] Yu JC, Yu J, Ho W, Jiang Z, Zhang L. Effects of F- doping on the photocatalytic activity and microstructures of nanocrystalline TiO2 powders. Chem Mater 2002; 14: 3808-3816.

DOI: 10.1021/cm020027c

Google Scholar

[39] Hong X, Wang Z, Cai W, et al. Visible-light-activated nanoparticle photocatalyst of iodine-doped titanium dioxide. Chem Mater 2005; 17: 1548-1552.

DOI: 10.1021/cm047891k

Google Scholar

[40] Sakthivel S, Janczarek M, Kisch H. Visible light activity and photoelectrochemical properties of nitrogen-doped TiO2. J Phys Chem B 2004; 108: 19384-19387.

DOI: 10.1021/jp046857q

Google Scholar

[41] M. Yao, J. Chen, C. Zhao, Ye Chen, Photocatalytic activities of Ion doped TiO2 thin films when prepared on different substrates, Thin Solid Films 517 (2009) 5994–5999.

DOI: 10.1016/j.tsf.2009.03.169

Google Scholar

[42] K. Murugan, R. Subasri, T.N. Rao, Ashutosh S. Gandhi, B.S. Murty, Synthesis, characterization and demonstration of self-cleaning TiO2 coatings on glass and glazed ceramic tiles, Progress in Organic Coatings 76 (2013) 1756– 1760.

DOI: 10.1016/j.porgcoat.2013.05.012

Google Scholar

[43] M. Machida, K. Norimoto, T. Kimura, Antibacterial Activity of Photocatalytic Titanium Dioxide Thin Films with Photodeposited Silver on the Surface of Sanitary Ware, J. Am. Ceram. Soc., 88.

DOI: 10.1111/j.1551-2916.2004.00006.x

Google Scholar

[1] 95–100 (2005).

Google Scholar

[44] A. Ghafari-Nazari, F. Moztarzadeh, SM. Rabiee, T. Rajabloo, M. Mozafari, L. Tayebi, Antibacterial activity of silver photodeposited nepheline thin film coatings, Ceramics International 38 (2012) 5445–5451.

DOI: 10.1016/j.ceramint.2012.03.055

Google Scholar

[45] M. Kawashita, et al., Antibacterial silver-containing silica glass prepared by sol-gel method, Biomaterials, 21.

DOI: 10.1016/s0142-9612(99)00201-x

Google Scholar

[4] 393-398 (2000).

Google Scholar

[46] S. de Niederhausern, M- Bondi, F. Bondioli, Self-Cleaning and Antibacteric Ceramic Tile Surface, Int. J. Appl. Ceram. Technol., 10.

DOI: 10.1111/j.1744-7402.2012.02801.x

Google Scholar

[6] (2013) 949–956.

Google Scholar

[47] K. Page, et al., Titania and silver-titania composite films on glass-potent antimicrobial coatings, Journal of Materials Chemistry, 17.

Google Scholar

[1] 95-104 (2007).

Google Scholar

[48] A. Mukhopadhyay, et al., Ag-TiO(2) Nanoparticle Codoped SiO(2) Films on ZrO(2) Barrier-Coated Glass Substrates with Antibacterial Activity in Ambient Condition, Acs Applied Materials & Interfaces, 2.

DOI: 10.1021/am100363d

Google Scholar

[9] 2540-2546 (2010).

Google Scholar

[49] S.Q. Sun, et al., Preparation and antibacterial activity of Ag-TiO2 composite film by liquid phase deposition (LPD) method, Bulletin of Materials Science, 31.

DOI: 10.1007/s12034-008-0011-7

Google Scholar

[1] 61-66 (2008).

Google Scholar

[50] W. Toshiya et al., U.S. Patent 5, 853, 866. (1998).

Google Scholar

[51] Information on: http: /www. casalgrandepadana. it/index. cfm/1, 812, 0, 43, html/Bios.

Google Scholar

[52] I. Gambarelli, G. Pozzi, W.O. Patent 094341. (2004).

Google Scholar

[53] Information on: http: /www. gambarelli. it/index_eng. html.

Google Scholar

[54] G. Pellicelli, A. Tucci, E. Rambaldi, W.O. Patent 146410. (2010).

Google Scholar

[55] Information on: http: /www. granitifiandre. com/porcelain-tile/antibacterial-ceramic/active.

Google Scholar

[56] M. Manfredini, E.U. Patent 1, 762, 552. (2007).

Google Scholar

[57] A. Campbell, W.O. Patent 126917. (2010).

Google Scholar

[58] Information on: http: /www. panaria. it/english.

Google Scholar

[59] Information on: http: /en. polis. it/ceramica-sostenibile.

Google Scholar

[60] J. Prochazka, U.S. Patent 0275168. (2007).

Google Scholar

[61] UNI-EN 1096-2. Glass in building. Coated glass. Requirements and test methods for class A, B and S coatings. (2002).

Google Scholar

[62] EN ISO 10545-7. Ceramic tiles. Determination of resistance to surface abrasion for glazed tiles. (1999).

DOI: 10.3403/01645026u

Google Scholar

[63] ISO 10678. Fine ceramics (advanced ceramics, advanced technical ceramics) – Determination of photocatalytic activity of surfaces in an aqueous medium by degradation of methylene blue. (2010).

DOI: 10.3403/30184698u

Google Scholar

[64] ISO 27448. Fine ceramics (advanced ceramics, advanced technical ceramics) – Test method for self-cleaning performance of semiconducting photocatalytic materials – Measurement of water contact angle. (2009).

DOI: 10.3403/30200761u

Google Scholar

[65] C. Sciancalepore, F. Bondioli, Durability of SiO2-TiO2 photocatalytic coatings on ceramic tiles, International Journal of Applied Ceramic Technology in press (2014).

DOI: 10.1111/ijac.12240

Google Scholar