[1]
FINE PORCELAINIZED STONEWARE, ed. SACMI in web site www. sacmi. com.
Google Scholar
[2]
T. Manfredini, G.C. Pellacani, M. Romagnoli, L. Pennisi, Porcelainized stoneware tile, Am. Ceram. Soc. Bull. 74 (1995) 76.
Google Scholar
[3]
C. Leonelli, F. Bondioli, P. Veronesi, M. Romagnoli, T. Manfredini, G.C. Pellacani, V. Cannillo, Enhancing the mechanical properties of porcelain stoneware tiles: a microstructural approach, Euro. Ceram. Soc. 21 (2001) 785.
DOI: 10.1016/s0955-2219(00)00266-1
Google Scholar
[4]
W. Barthlott, C. Neinhuis, Purity of the sacred lotus, or escape from contamination in biological surfaces, Planta, 202 (1997) 1.
DOI: 10.1007/s004250050096
Google Scholar
[5]
A. Berto, Ceramic tiles: Above and beyond traditional applications, J. Euro. Ceram. Soc. 27 (2007) 607-613.
Google Scholar
[6]
F. Bondioli, M. Dinelli, R. Giovanardi, M. Giorgi, Functionalization of ceramic tile surface by soluble salts addition: Part II. Titanium and silver addition, J. Euro. Ceram. Soc. 30 (2010) 1873-1878.
DOI: 10.1016/j.jeurceramsoc.2010.03.008
Google Scholar
[7]
F. Bondioli, T. Manfredini, M. Giorgi, G. Vignali, Functionalization of ceramic tile surface by soluble salts addition: Part I, J. Euro. Ceram. Soc. 30 (2010) 11-16.
DOI: 10.1016/j.jeurceramsoc.2009.08.012
Google Scholar
[8]
F. Bondioli, R. Taurino, AM. Ferrari, Functionalization of ceramic tile surface by sol-gel technique, J Colloid Interface Sci. 334 (2009) 195-201.
DOI: 10.1016/j.jcis.2009.02.054
Google Scholar
[9]
A. Fujishima and K. Honda, Electrochemical Photolysis of Water at a Semiconductor Electrode, Nature, 238 (1972) 37.
DOI: 10.1038/238037a0
Google Scholar
[10]
J. Zhao and X.D. Yang, Photocatalytic oxidation for indoor air purification: a literature review, Building and Environment, 38.
Google Scholar
[5]
(2003) 645-654.
Google Scholar
[11]
M.V. Diamanti, M. Ormellese, and M. Pedeferri, Characterization of photocatalytic and superhydrophilic properties of mortars containing titanium dioxide, Cement and Concrete Research, 38.
DOI: 10.1016/j.cemconres.2008.07.003
Google Scholar
[11]
(2008) 1349-1353.
Google Scholar
[12]
X.J. Zhao, Development of multifunctional photoactive self-cleaning glasses, J. Non-Crystalline Solids, 354[12-13] (2008) 1424-1433.
DOI: 10.1016/j.jnoncrysol.2006.10.093
Google Scholar
[13]
E. Quagliarini, F. Bondioli, G.B. Goffredo, A. Licciulli, P. Munafò, Smart surfaces for architectural heritage: preliminary results about the application of Tio2-based coatings on travertine, J. Cultural Heritage, 13.
DOI: 10.1016/j.culher.2011.10.002
Google Scholar
[2]
(2012) 204-209.
Google Scholar
[14]
J. Maatta, Effects of UV-radiation on the cleanability of titanium dioxide-coated glazed ceramic tiles, J. Euro. Ceram. Soc. 27.
Google Scholar
[16]
(2007) 4569-4574.
Google Scholar
[15]
M. Raimondo, G. Guarini, C. Zanelli, F. Marani, L. Fossa, M. Dondi, Printing nano TiO2 on large-sized building materials: Technologies, surface modifications and functional behavior, Ceramics International 38 (2012) 4685–4693.
DOI: 10.1016/j.ceramint.2012.02.051
Google Scholar
[16]
R.A. Spurr, H. Myers, Quantitative analysis of anatase–rutile mixtures with an X-ray diffractometer, Anal. Chem. 29 (1957) 760–767.
DOI: 10.1021/ac60125a006
Google Scholar
[17]
P.I. Gouma, M.J. Mills, Anatase-to-rutile transformation in titania powders, J. Am. Ceram. Soc. 84 (2001) 619–622.
DOI: 10.1111/j.1151-2916.2001.tb00709.x
Google Scholar
[18]
H. Zhang, J.F. Banfield, Phase transformation of nanocrystalline anatase to-rutile via combined interface and surface nucleation, J. Mater. Res. 15 (2000) 437–448.
DOI: 10.1557/jmr.2000.0067
Google Scholar
[19]
M. Piispanen, J. Matta, S. Areva, A.M. Sjoberg, M. Hupa, L. Hupa, Chemical resistance and cleaning properties of coated glazed surfaces, J. Eur. Ceram. Soc. 29 (2009) 1855–1860.
DOI: 10.1016/j.jeurceramsoc.2008.11.007
Google Scholar
[20]
A. Chabas, T. Lombardo, H. Cachier, M.H. Pertuisot, K. Oikonomou, R. Falcone, M. Verità, F. Geotti-Bianchini, Self cleaning versus float glass in urban atmosphere, Glass Technol. -Eur. J. Glass Sci. Technol. Part A 50 (2009) 139–142.
DOI: 10.1016/j.buildenv.2007.12.008
Google Scholar
[21]
J. Maatta, M. Piispanen, HR. Kymalainen, A. Uusi-Rauva, K. -R. Hurme, S. Areva, AM. Sjoberg, L. Hupa, Effects of UV-radiation on the cleanability of titanium dioxide-coated glazed ceramic tiles, J Euro Ceram Soc 27 (2007) 4569–4574.
DOI: 10.1016/j.jeurceramsoc.2007.03.026
Google Scholar
[22]
P. Zhang, J Tian, R. Xu, G. Ma, Hydrophilicity, photocatalytic activity and stability of tetraethyl orthosilicate modified TiO2 film on glazed ceramic surface, Applied Surface Science 266 (2013) 141– 147.
DOI: 10.1016/j.apsusc.2012.11.117
Google Scholar
[23]
M.P. Seabra, R.R. Pires, J.A. Labrincha, Ceramic tiles for photodegradation of Orange II solutions, Chemical Engineering Journal 171 (2011) 692– 702.
DOI: 10.1016/j.cej.2011.04.028
Google Scholar
[24]
V. Petrovic, V. Ducman, SD. Skapin, Determination of the photocatalytic efficiency of TiO2 coatings on ceramic tiles by monitoring the photodegradation of organic dyes, Ceramics International 38 (2012) 1611–1616.
DOI: 10.1016/j.ceramint.2011.09.050
Google Scholar
[25]
E. Rego, J. Marto, P. S. Marcos, J.A. Labrincha, Decolouration of Orange II solutions by TiO2 and ZnO active layers screen-printed on ceramic tiles under sunlight irradiation, Applied Catalysis A: General 355 (2009) 109–114.
DOI: 10.1016/j.apcata.2008.12.005
Google Scholar
[26]
P. S. Marcos, J. Marto, T. Trindade, J.A. Labrincha, Screen-printing of TiO2 photocatalytic layers on glazed ceramic tiles, Journal of Photochemistry and Photobiology A: Chemistry 197 (2008) 125–131.
DOI: 10.1016/j.jphotochem.2007.12.017
Google Scholar
[27]
M. Raimondo, G. Guarini, C. Zanelli, F. Marani, L. Fossa, M. Dondi, Printing nano TiO2 on large-sized building materials: Technologies, surface modifications and functional behaviour, Ceramics International 38 (2012) 4685–4693.
DOI: 10.1016/j.ceramint.2012.02.051
Google Scholar
[28]
I. Fasaki, K. Siamos, M. Arin, P. Lommens, I. Van Driessche, S.C. Hopkins, B.A. Glowacki, I. Arabatzis, Ultrasound assisted preparation of stable water-based nanocrystalline TiO2 suspensions for photocatalytic applications of inkjet-printed films, Applied Catalysis A: General 411– 412 (2012).
DOI: 10.1016/j.apcata.2011.10.020
Google Scholar
[29]
J. Szczawiński, H. Tomaszewski, A. Jackowska-Tracz, M.E. Szczawińska, Survival of Staphylococcus aureus exposed to UV radiation on the surface of ceramic tiles coated with TiO2, Polish Journal of Veterinary Sciences Vol. 14, No. 1 (2011), 41-46.
DOI: 10.2478/v10181-011-0006-y
Google Scholar
[30]
M. Anpo, Use of visible light. Second-generation titanium oxide photocatalysts prepared by the application of an advanced metal ion-implantation method. Pure Appl Chem, 72 (2000) 1787-1792.
DOI: 10.1351/pac200072091787
Google Scholar
[31]
H. Yamashita, M. Harada, J. Misaka, M. Takeuchi, K. Ikeue, M. Anpo, Degradation of propanol diluted in water under visible light irradiation using metal ion-implanted titanium dioxide photocatalysts, J Photochem Photobiol A, 148 (2002) 257-261.
DOI: 10.1016/s1010-6030(02)00051-5
Google Scholar
[32]
J. Zhu, W. Zheng, B. He, J. Zhang, M- Anpo, Characterization of Fe-TiO2 photocatalysts synthesized by hydrothermal method and their photocatalytic reactivity for degradation of XRG dye diluted in water, J Mol Catal A, 216 (2004) 35-43.
DOI: 10.1016/j.molcata.2004.01.008
Google Scholar
[33]
JC-S Wu, CH Chen, A visible-light response vanadium-doped titania nanocatalyst by sol-gel method, J Photochem Photobiol A, 163 (2004) 509-515.
DOI: 10.1016/j.jphotochem.2004.02.007
Google Scholar
[34]
Sakthivel S, Kisch H. Daylight photocatalysts by carbon-modified titanium dioxide. Angew Chem Int Ed 2003; 42: 4908-4911.
DOI: 10.1002/anie.200351577
Google Scholar
[35]
Umebabayashi T, Yamaki T, Itoh H, Asai K. Band gap narrowing of titanium dioxide by sulfur doping. Appl Phys Lett, 81 (2002) 454-456.
DOI: 10.1063/1.1493647
Google Scholar
[36]
Moon SC, Mametsuka H, Tabata S, Suzuki E. Photocatalytic production of hydrogen from water using TiO2 and B/TiO2. Catal Today 2000; 58: 125-132.
DOI: 10.1016/s0920-5861(00)00247-9
Google Scholar
[37]
Yu JC, Zhang L, Zheng Z, Zhao J. Synthesis and characterization of phosphated mesoporous ti37nium dioxide with high photocatalytic activity. Chem Mater 2003; 15: 2280 -2286.
DOI: 10.1021/cm0340781
Google Scholar
[38]
Yu JC, Yu J, Ho W, Jiang Z, Zhang L. Effects of F- doping on the photocatalytic activity and microstructures of nanocrystalline TiO2 powders. Chem Mater 2002; 14: 3808-3816.
DOI: 10.1021/cm020027c
Google Scholar
[39]
Hong X, Wang Z, Cai W, et al. Visible-light-activated nanoparticle photocatalyst of iodine-doped titanium dioxide. Chem Mater 2005; 17: 1548-1552.
DOI: 10.1021/cm047891k
Google Scholar
[40]
Sakthivel S, Janczarek M, Kisch H. Visible light activity and photoelectrochemical properties of nitrogen-doped TiO2. J Phys Chem B 2004; 108: 19384-19387.
DOI: 10.1021/jp046857q
Google Scholar
[41]
M. Yao, J. Chen, C. Zhao, Ye Chen, Photocatalytic activities of Ion doped TiO2 thin films when prepared on different substrates, Thin Solid Films 517 (2009) 5994–5999.
DOI: 10.1016/j.tsf.2009.03.169
Google Scholar
[42]
K. Murugan, R. Subasri, T.N. Rao, Ashutosh S. Gandhi, B.S. Murty, Synthesis, characterization and demonstration of self-cleaning TiO2 coatings on glass and glazed ceramic tiles, Progress in Organic Coatings 76 (2013) 1756– 1760.
DOI: 10.1016/j.porgcoat.2013.05.012
Google Scholar
[43]
M. Machida, K. Norimoto, T. Kimura, Antibacterial Activity of Photocatalytic Titanium Dioxide Thin Films with Photodeposited Silver on the Surface of Sanitary Ware, J. Am. Ceram. Soc., 88.
DOI: 10.1111/j.1551-2916.2004.00006.x
Google Scholar
[1]
95–100 (2005).
Google Scholar
[44]
A. Ghafari-Nazari, F. Moztarzadeh, SM. Rabiee, T. Rajabloo, M. Mozafari, L. Tayebi, Antibacterial activity of silver photodeposited nepheline thin film coatings, Ceramics International 38 (2012) 5445–5451.
DOI: 10.1016/j.ceramint.2012.03.055
Google Scholar
[45]
M. Kawashita, et al., Antibacterial silver-containing silica glass prepared by sol-gel method, Biomaterials, 21.
DOI: 10.1016/s0142-9612(99)00201-x
Google Scholar
[4]
393-398 (2000).
Google Scholar
[46]
S. de Niederhausern, M- Bondi, F. Bondioli, Self-Cleaning and Antibacteric Ceramic Tile Surface, Int. J. Appl. Ceram. Technol., 10.
DOI: 10.1111/j.1744-7402.2012.02801.x
Google Scholar
[6]
(2013) 949–956.
Google Scholar
[47]
K. Page, et al., Titania and silver-titania composite films on glass-potent antimicrobial coatings, Journal of Materials Chemistry, 17.
Google Scholar
[1]
95-104 (2007).
Google Scholar
[48]
A. Mukhopadhyay, et al., Ag-TiO(2) Nanoparticle Codoped SiO(2) Films on ZrO(2) Barrier-Coated Glass Substrates with Antibacterial Activity in Ambient Condition, Acs Applied Materials & Interfaces, 2.
DOI: 10.1021/am100363d
Google Scholar
[9]
2540-2546 (2010).
Google Scholar
[49]
S.Q. Sun, et al., Preparation and antibacterial activity of Ag-TiO2 composite film by liquid phase deposition (LPD) method, Bulletin of Materials Science, 31.
DOI: 10.1007/s12034-008-0011-7
Google Scholar
[1]
61-66 (2008).
Google Scholar
[50]
W. Toshiya et al., U.S. Patent 5, 853, 866. (1998).
Google Scholar
[51]
Information on: http: /www. casalgrandepadana. it/index. cfm/1, 812, 0, 43, html/Bios.
Google Scholar
[52]
I. Gambarelli, G. Pozzi, W.O. Patent 094341. (2004).
Google Scholar
[53]
Information on: http: /www. gambarelli. it/index_eng. html.
Google Scholar
[54]
G. Pellicelli, A. Tucci, E. Rambaldi, W.O. Patent 146410. (2010).
Google Scholar
[55]
Information on: http: /www. granitifiandre. com/porcelain-tile/antibacterial-ceramic/active.
Google Scholar
[56]
M. Manfredini, E.U. Patent 1, 762, 552. (2007).
Google Scholar
[57]
A. Campbell, W.O. Patent 126917. (2010).
Google Scholar
[58]
Information on: http: /www. panaria. it/english.
Google Scholar
[59]
Information on: http: /en. polis. it/ceramica-sostenibile.
Google Scholar
[60]
J. Prochazka, U.S. Patent 0275168. (2007).
Google Scholar
[61]
UNI-EN 1096-2. Glass in building. Coated glass. Requirements and test methods for class A, B and S coatings. (2002).
Google Scholar
[62]
EN ISO 10545-7. Ceramic tiles. Determination of resistance to surface abrasion for glazed tiles. (1999).
DOI: 10.3403/01645026u
Google Scholar
[63]
ISO 10678. Fine ceramics (advanced ceramics, advanced technical ceramics) – Determination of photocatalytic activity of surfaces in an aqueous medium by degradation of methylene blue. (2010).
DOI: 10.3403/30184698u
Google Scholar
[64]
ISO 27448. Fine ceramics (advanced ceramics, advanced technical ceramics) – Test method for self-cleaning performance of semiconducting photocatalytic materials – Measurement of water contact angle. (2009).
DOI: 10.3403/30200761u
Google Scholar
[65]
C. Sciancalepore, F. Bondioli, Durability of SiO2-TiO2 photocatalytic coatings on ceramic tiles, International Journal of Applied Ceramic Technology in press (2014).
DOI: 10.1111/ijac.12240
Google Scholar