A Microfluidic-Assisted Fabrication of Size-Controlled Porose CeO2 Microspheres as an Analog Production of Nuclear Fuel Beads

Article Preview

Abstract:

Porosity-controlled nuclear fuel microsphere is an essential material of fabricating minor actinide-bearing dispersion-type nuclear fuel with the infiltration processes. In this paper, monodisperse and size-controlled spherical oxide nuclear fuel particles with size range of 20μm to 800μm were fabricated by means of microfluidic technology combined with sol-gel process using cerium as a surrogate for plutonium. The porous CeO2 beads with the density range of 25% to 93% T.D. were successfully prepared by the addition of polyethylene glycol 6000 used as a porogen to the feed broth. The uniform U3O8 beads were also prepared at the same experimental conditions as CeO2 beads prepared, which shows the feasibility of the method for fabricating size-controlled monodisperse nuclear fuel beads.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

55-68

Citation:

Online since:

October 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M. Osaka, S. Miwa, Y. Tachi, Simple fabrication process for CeO2–MgO composite as surrogate for actinide-containing target for use in nuclear fuel, Ceramics International. 32 (2006) 659-663.

DOI: 10.1016/j.ceramint.2005.04.026

Google Scholar

[2] Y. Croixmarie, E. Abonneau, A. Fernandez, R.J.M. Konings, F. Desmouliere, L. Donnet, Fabrication of transmutation fuels and targets: the ECRIX and CAMIX-COCHIX experience, Journal of Nuclear Materials. 320 (2003) 11-17.

DOI: 10.1016/s0022-3115(03)00162-4

Google Scholar

[3] S. Pillon, J. Somers, S. Grandjean, J. Lacquement, Aspects of fabrication of curium-based fuels and targets, Journal of Nuclear Materials. 320 (2003) 36-43.

DOI: 10.1016/s0022-3115(03)00168-5

Google Scholar

[4] W. Maschek, X. Chen, F. Delage, A. Femandez-Carretero, D. Haas, C.M. Boccaccini, A. Rineiski, P. Smith, V. Sobolev, R. Thetford, J. Wallenius, Accelerator driven systems for transmutation: Fuel development, design and safety, Progress in Nuclear Energy. 50 (2008).

DOI: 10.1016/j.pnucene.2007.11.066

Google Scholar

[5] D.D. Sood, The role sol-gel process for nuclear fuels-an overview, Journal of Sol-Gel Science and Technology. 59 (2011) 404-416.

DOI: 10.1007/s10971-010-2273-y

Google Scholar

[6] A. Fernandez, R.J.M. Konings, J. Somers, Design and fabrication of specific ceramic-metallic fuels and targets, Journal of Nuclear Materials. 319 (2003) 44-50.

DOI: 10.1016/s0022-3115(03)00132-6

Google Scholar

[7] B. Ye, J.L. Miao, J.L. Li, Z.C. Zhao, Z.Q. Chang, C.A. Serra, Fabrication of size-controlled CeO2 microparticles by a microfluidic sol-gel process as an analog preparation of ceramic nuclear fuel, Journal of Nuclear Science and Technology. 50 (2013).

DOI: 10.1080/00223131.2013.796897

Google Scholar

[8] Z.Q. Chang, C.A. Serra, M. Bouquey, L. Prat, G. Hadziioannou, Co-axial capillaries microfluidic device for synthesizing size- and morphology-controlled polymer core-polymer shell particles, Lab on a Chip. 9 (2009) 3007-3011.

DOI: 10.1039/b913703c

Google Scholar

[9] C.A. Serra, Z.Q. Chang, Microfluidic-assisted synthesis of polymer particles, Chemical Engineering & Technology. 31 (2008) 1099-1115.

DOI: 10.1002/ceat.200800219

Google Scholar

[10] E. Remy, S. Picart, S. Grandjean, T. Delahaye, N. Herlet, P. Allegri, O. Dugne, R. Podor, N. Clavier, P. Blanchart, A. Ayral, Calcined resin microsphere pelletization (CRMP): A novel process for sintered metallic oxide pellets, Journal of the European Ceramic Society. 32 (2012).

DOI: 10.1016/j.jeurceramsoc.2012.04.011

Google Scholar

[11] Z.Q. Chang, C.A. Serra, M. Bouquey, I. Kraus, S.N. Li, J.M. Kohler, Multiscale materials from microcontinuous-flow synthesis: ZnO and Au nanoparticle-filled uniform and homogeneous polymer microbeads, Nanotechnology. 21 (2010).

DOI: 10.1088/0957-4484/21/1/015605

Google Scholar

[12] C. Cramer, P. Fischer, E.J. Windhab, Drop formation in a co-flowing ambient fluid, Chemical Engineering Science. 59 (2004) 3045-3058.

DOI: 10.1016/j.ces.2004.04.006

Google Scholar

[13] C. Serra, N. Berton, M. Bouquey, L. Prat, G. Hadziioannou, A predictive approach of the influence of the operating parameters on the size of polymer particles synthesized in a simplified microfluidic system, Langmuir. 23 (2007) 7745-7750.

DOI: 10.1021/la063289s

Google Scholar

[14] B. Guo, Z.L. Liu, L. Hong, H.X. Jiang, J.Y. Lee, Photocatalytic effect of the sol-gel derived nanoporous TiO2 transparent thin films, Thin Solid Films. 479 (2005) 310-315.

DOI: 10.1016/j.tsf.2004.11.197

Google Scholar

[15] J.G. Yu, J.C. Yu, B. Cheng, X.J. Zhao, Z. Zheng, A.S.K. Li, Atomic force microscopic studies of porous TiO2 thin films prepared by the sol-gel method, Journal of Sol-Gel Science and Technology. 24 (2002) 229-240.

DOI: 10.1023/a:1015384624389

Google Scholar

[16] Y. Chen, J.X. Lu, Facile fabrication of porous hollow CeO2 microspheres using polystyrene spheres as templates, Journal of Porous Materials. 19 (2012) 289-294.

DOI: 10.1007/s10934-011-9474-9

Google Scholar