Depleted Uranium as Hydrogen Storage Material

Article Preview

Abstract:

Large amounts of depleted uranium kept as uranium fluoride or solid form after enrichment of natural uranium is sought to be utilized in the form of UNiAl intermetallic compound for hydrogen absorber. First principles calculation on UNiAl hydride has been performed in this study to predict the change of the crystal structure and the lattice constants with varying the hydrogen content. The results of the calculations have supported the experimental trends, suggesting that the present approach is promising in predicting the better hydrogen absorber based on depleted uranium.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

32-37

Citation:

Online since:

October 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M. Yamawaki, H. Ito, T. Yamamoto, Genshiryoku Kogyo, 41 (7) (1995) 27-33 (in Japanese).

Google Scholar

[2] K. Asada, K. Ono, M. Yamawaki et al., J. Alloys and Compounds, 231 (1995) 780-784.

Google Scholar

[3] M. Yamawaki, H. Suwarno, T. Yamamoto et al., CIMTEC1999, Firenze, Italy (1999).

Google Scholar

[4] K. Konashi, M. Yamawaki, Advances in Applied Ceramics, 111(1&2) (2012) 83-88.

Google Scholar

[5] T. Yamamoto, T. Supardjo, M. Yamawaki et al., Fusion Tech., 14 (1988) 764-768.

Google Scholar

[6] T. Yamamoto, T. Yoneoka, M. Yamawaki et al., Fusion Eng. Des., 7 (1989) 363-367.

Google Scholar

[7] T. Yamamoto, S. Tanaka, M. Yamawaki, J. Nucl. Mater., 170 (1990) 140-146.

Google Scholar

[8] T. Yamamoto, H. Kayano, M. Yamawaki et al., J. Less-Common Met., 172-174 (1991) 71-78.

Google Scholar

[9] H. Ito, K. Yamaguchi, M. Yamawaki et al., J. Alloys and Compounds, 271-273 (1998) 629-631.

Google Scholar

[10] A. V. Andreev, M. I. Bartashevich, A. V. Deryagin et al., Phys. Status Solidi A, 98 (1986) K47.

Google Scholar

[11] T. Yamamoto, H. Kayano, M. Yamawaki, J. Alloys and Compounds, 213-214 (1994) 533-535.

Google Scholar

[12] T. Yamamoto, Y. Ishii, H. Kayano, J. Alloys and Compounds, 269 (1998) 162-165.

Google Scholar

[13] S. Yamanaka, T. Iguchi, Y. Fujita et al., J. Alloys and Compounds, 293-295 (1999) 52-56.

Google Scholar

[14] H. Drulis, W. Petrynski, B. Stalinski et al., J. Less Common Met., 83 (1982) 87.

Google Scholar

[15] I. Jacob, Z. Hadari, J. J. Reilly, J. Less Common Met., 103 (1984) 123.

Google Scholar

[16] P. Raj, A. Sathyamoorthy, K. Shashikala et al., J. Alloys and Compounds, 296 (2000) 20.

Google Scholar

[17] S. Maskova, L. Havela, S. Danis et al., Journal of Physics: Conference Series, 303 (2011) 012011.

Google Scholar

[18] P. Raj et al., Phys Rev B, 66 (2002) 214420.

Google Scholar

[19] G. Kresse, J. Hafner., Phys. Rev. B, 47 (1993) 558.

Google Scholar

[20] G. Kresse, J. Furthmueller, Phys. Rev. B, 54 (1996) 11169.

Google Scholar

[21] H. J. Monkhorst, J. D. Pack, Phys. Rev. B, 13 (1976) 5188.

Google Scholar

[22] T. Yamamoto, K. Ohsawa et al. (to be submitted).

Google Scholar