Study on the Creep and Fatigue Properties of CLAM Steel

Article Preview

Abstract:

China Low Activation Martensitic (CLAM) steel has been chosen as the structural material for China ITER Test Blanket Module (TBM). Creep-rupture and fatigue damage caused by high temperature and pulse stresses are two key issues for the final application of CLAM steel in China ITER TBM. In this paper, the research and development progress of the creep and fatigue behaviors of CLAM steel were presented. These results showed that CLAM steel possessed good high temperature mechanical properties.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

12-16

Citation:

Online since:

October 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] W. Meier, F. Najmabadi, J. Sheffield, et al., Role of fusion energy in a sustainable global energy Strategy, Energy & Environment, 13 (2002) 647-665.

Google Scholar

[2] T. -L. Sham, S. Zinkle, Creep and fatigue issues for structural materials in demonstration fusion energy systems, Trans. Indian Inst. Met., 63 (2010) 331-337.

DOI: 10.1007/s12666-010-0044-7

Google Scholar

[3] B. van der Schaaf, D.S. Gelles, S. Jitsukawa, et al., Progress and critical issues of reduced activation ferritic/martensitic steel development, J. Nucl. Mater., 283 (2000) 52-59.

DOI: 10.1016/s0022-3115(00)00220-8

Google Scholar

[4] N. Baluc, D.S. Gelles, S. Jitsukawa, et al., Status of reduced activation ferritic/martensitic steel development, J. Nucl. Mater., 367 (2007) 33-41.

DOI: 10.1016/j.jnucmat.2007.03.036

Google Scholar

[5] Q. Huang, N. Baluc, Y. Dai, et al., Recent progress of R&D activities on reduced activation ferritic/martensitic steels, J. Nucl. Mater., 442 (2013) 2-8.

Google Scholar

[6] Q. Huang, Y. Wu, J. Li, et al., Status and strategy of fusion materials development in China. J. Nucl. Mater., 386-388 (2009) 400-404.

Google Scholar

[7] Q. Huang, C. Li, Q. Wu, et al., Progress in development of CLAM steel and fabrication of small TBM in China, J. Nucl. Mater., 417 (2011) 85-88.

Google Scholar

[8] Q.Y. Huang, J.G. Li, Y.X. Chen, Study of irradiation effects in China low activation martensitic steel CLAM, J. Nucl. Mater., 329 (2004) 268-272.

DOI: 10.1016/j.jnucmat.2004.04.056

Google Scholar

[9] Q. Huang, C. Li, Y. Li, et al., Progress in development of China low activation martensitic steel for fusion application. J. Nucl. Mater., 367-370 (2007) 142-146.

DOI: 10.1016/j.jnucmat.2007.03.153

Google Scholar

[10] S. Liu, Q. Huang, C. Li, et al. Influence of non-metal inclusions on mechanical properties of CLAM steel. Fusion Eng. Des., 84 (2009) 1214-1218.

DOI: 10.1016/j.fusengdes.2008.12.037

Google Scholar

[11] Qunying Huang, Maolian Zhang, Zhiqiang Zhu, et al., Corrosion experiment in the first liquid metal LiPb loop of China. Fusion Eng. Des., 82(2007) 2655-2659.

DOI: 10.1016/j.fusengdes.2007.07.022

Google Scholar

[12] C. Li, Q. Huang, Q. Wu, et al., Welding techniques development of CLAM steel for test blanket module. Fusion Eng. Des., 84 (2009) 1184-1187.

DOI: 10.1016/j.fusengdes.2008.12.039

Google Scholar

[13] Boyu Zhong, Bo Huang, Chunjing Li, et al., Creep deformation and rupture behavior of CLAM steel at 823K and 873K. presented on the 16th International Conference on Fusion Reactor Materials (ICFRM-16), Beijing, China, Oct. 20-25, (2013).

Google Scholar

[14] M.E. Kassner, Fundamentals of creep in metals and alloys, Elsevier publisher, (2008).

Google Scholar

[15] Y. Li, T. Nagasaka, T. Muroga, et al., Creep properties and microstructure of JLF-1 and CLAM steels aged at 823 to 973 K, Fusion Sci. Tech., 56 (2009) 323-327.

DOI: 10.13182/fst09-a8922

Google Scholar

[16] X. Hu, L. Huang, W. Wang, et al. Low cycle fatigue properties of CLAM steel at room temperature, Fusion Eng. Des., 88 (2013) 3050-3059.

DOI: 10.1016/j.fusengdes.2013.08.001

Google Scholar

[17] P. Marmy, Low cycle fatigue and creep-fatigue of Eurofer 97, Centre de recherches en physique des plasmas (CRPP), Ecole polytechnique fédérale, (2006).

Google Scholar

[18] AFCEN, RPP2-2012-9%Cr Properties of chrome alloy steels from Annex A3. 18AS, RCC-MRx (2012).

Google Scholar