[1]
W. Meier, F. Najmabadi, J. Sheffield, et al., Role of fusion energy in a sustainable global energy Strategy, Energy & Environment, 13 (2002) 647-665.
Google Scholar
[2]
T. -L. Sham, S. Zinkle, Creep and fatigue issues for structural materials in demonstration fusion energy systems, Trans. Indian Inst. Met., 63 (2010) 331-337.
DOI: 10.1007/s12666-010-0044-7
Google Scholar
[3]
B. van der Schaaf, D.S. Gelles, S. Jitsukawa, et al., Progress and critical issues of reduced activation ferritic/martensitic steel development, J. Nucl. Mater., 283 (2000) 52-59.
DOI: 10.1016/s0022-3115(00)00220-8
Google Scholar
[4]
N. Baluc, D.S. Gelles, S. Jitsukawa, et al., Status of reduced activation ferritic/martensitic steel development, J. Nucl. Mater., 367 (2007) 33-41.
DOI: 10.1016/j.jnucmat.2007.03.036
Google Scholar
[5]
Q. Huang, N. Baluc, Y. Dai, et al., Recent progress of R&D activities on reduced activation ferritic/martensitic steels, J. Nucl. Mater., 442 (2013) 2-8.
Google Scholar
[6]
Q. Huang, Y. Wu, J. Li, et al., Status and strategy of fusion materials development in China. J. Nucl. Mater., 386-388 (2009) 400-404.
Google Scholar
[7]
Q. Huang, C. Li, Q. Wu, et al., Progress in development of CLAM steel and fabrication of small TBM in China, J. Nucl. Mater., 417 (2011) 85-88.
Google Scholar
[8]
Q.Y. Huang, J.G. Li, Y.X. Chen, Study of irradiation effects in China low activation martensitic steel CLAM, J. Nucl. Mater., 329 (2004) 268-272.
DOI: 10.1016/j.jnucmat.2004.04.056
Google Scholar
[9]
Q. Huang, C. Li, Y. Li, et al., Progress in development of China low activation martensitic steel for fusion application. J. Nucl. Mater., 367-370 (2007) 142-146.
DOI: 10.1016/j.jnucmat.2007.03.153
Google Scholar
[10]
S. Liu, Q. Huang, C. Li, et al. Influence of non-metal inclusions on mechanical properties of CLAM steel. Fusion Eng. Des., 84 (2009) 1214-1218.
DOI: 10.1016/j.fusengdes.2008.12.037
Google Scholar
[11]
Qunying Huang, Maolian Zhang, Zhiqiang Zhu, et al., Corrosion experiment in the first liquid metal LiPb loop of China. Fusion Eng. Des., 82(2007) 2655-2659.
DOI: 10.1016/j.fusengdes.2007.07.022
Google Scholar
[12]
C. Li, Q. Huang, Q. Wu, et al., Welding techniques development of CLAM steel for test blanket module. Fusion Eng. Des., 84 (2009) 1184-1187.
DOI: 10.1016/j.fusengdes.2008.12.039
Google Scholar
[13]
Boyu Zhong, Bo Huang, Chunjing Li, et al., Creep deformation and rupture behavior of CLAM steel at 823K and 873K. presented on the 16th International Conference on Fusion Reactor Materials (ICFRM-16), Beijing, China, Oct. 20-25, (2013).
Google Scholar
[14]
M.E. Kassner, Fundamentals of creep in metals and alloys, Elsevier publisher, (2008).
Google Scholar
[15]
Y. Li, T. Nagasaka, T. Muroga, et al., Creep properties and microstructure of JLF-1 and CLAM steels aged at 823 to 973 K, Fusion Sci. Tech., 56 (2009) 323-327.
DOI: 10.13182/fst09-a8922
Google Scholar
[16]
X. Hu, L. Huang, W. Wang, et al. Low cycle fatigue properties of CLAM steel at room temperature, Fusion Eng. Des., 88 (2013) 3050-3059.
DOI: 10.1016/j.fusengdes.2013.08.001
Google Scholar
[17]
P. Marmy, Low cycle fatigue and creep-fatigue of Eurofer 97, Centre de recherches en physique des plasmas (CRPP), Ecole polytechnique fédérale, (2006).
Google Scholar
[18]
AFCEN, RPP2-2012-9%Cr Properties of chrome alloy steels from Annex A3. 18AS, RCC-MRx (2012).
Google Scholar