[1]
Alioua, T., Agoudjil, B., Chennouf, N., Boudenne, A., Benzarti, K., 2019. Investigation on heat and moisture transfer in bio-based building wall with consideration of the hysteresis effect. Building and Environment 106333. https://doi.org/10.1016/j.buildenv.2019.106333.
DOI: 10.1016/j.buildenv.2019.106333
Google Scholar
[2]
Amziane, S., Arnaud, L., 2013. Bio-aggregate-based building materials - Applications to hemp concretes. Wiley-ISTE, London. ISBN 978-1-84821-404-0.
DOI: 10.1002/9781118576809.ch7
Google Scholar
[3]
AQC, 2018. Commission Prévention Produits Mise En Œuvre (C2P): Prévention des désordres liés aux produits et procédés de construction, Publication Semestrielle.
Google Scholar
[4]
Benmahiddine, F., Bennai, F., Cherif, R., Belarbi, R., Tahakourt, A., ABAHRI, K., 2020a. Experimental investigation on the influence of immersion/drying cycles on the hygrothermal and mechanical properties of hemp concrete. Journal of Building Engineering 101758, 1–9. https://doi.org/10.1016/j.jobe.2020.101758.
DOI: 10.1016/j.jobe.2020.101758
Google Scholar
[5]
Benmahiddine, F., Cherif, R., Bennai, F., Belarbi, R., Tahakourt, A., Abahri, K., 2020b. Effect of flax shives content and size on the hygrothermal and mechanical properties of flax concrete. Construction and Building Materials 262, 120077. https://doi.org/10.1016/j.conbuildmat.2020.120077.
DOI: 10.1016/j.conbuildmat.2020.120077
Google Scholar
[6]
Bennai, F., 2017. Étude des mécanismes de transferts couplés de chaleur et d'humidité dans les matériaux poreux de construction en régime insaturé. Université de la Rochelle/Université de Bejaia.
DOI: 10.35219/foodtechnology.2020.1.09
Google Scholar
[7]
Bennai, F., El Hachem, C., Abahri, K., Belarbi, R., 2019. Influence of hydric solicitations on the morphological behavior of hemp concrete. RILEM Technical Letters 4, 16–21. https://doi.org/10.21809/rilemtechlett.2019.80.
DOI: 10.21809/rilemtechlett.2019.80
Google Scholar
[8]
Bennai, F., Issaadi, N., Abahri, K., Belarbi, R., Tahakourt, A., 2017. Experimental characterization of thermal and hygric properties of hemp concrete with consideration of the material age evolution. Heat Mass Transfer 54, 1189–1197. https://doi.org/10.1007/s00231-017-2221-2.
DOI: 10.1007/s00231-017-2221-2
Google Scholar
[9]
Brzyski, P., Barnat-Hunek, D., Suchorab, Z., Lagód, G., 2017. Composite materials based on hemp and flax for low-energy buildings. Materials 10, 510. https://doi.org/10.3390/ma10050510.
DOI: 10.3390/ma10050510
Google Scholar
[10]
Chabannes, M., Becquart, F., Garcia-Diaz, E., Abriak, N.E., Clerc, L., 2017. Experimental investigation of the shear behaviour of hemp and rice husk-based concretes using triaxial compression. Construction and Building Materials 143, 621–632. https://doi.org/10.1016/j.conbuildmat.2017.03.148.
DOI: 10.1016/j.conbuildmat.2017.03.148
Google Scholar
[11]
Colinart, T., Glouannec, P., 2017. Temperature dependence of sorption isotherm of hygroscopic building materials. Part 1: Experimental evidence and modeling. Energy and Buildings 139, 360–370. https://doi.org/10.1016/j.enbuild.2016.12.082.
DOI: 10.1016/j.enbuild.2016.12.082
Google Scholar
[12]
Collet, F., Pretot, S., 2012. Effect of coating on moisture buffering of hemp concrete, in: Second International Conference on Building Energy and Environment, August 1–4, 2012, Boulder, Colorado.
Google Scholar
[13]
Delannoy, G., Marceau, S., Glé, P., Gourlay, E., Guéguen-Minerbe, M., Amziane, S., Farcas, F., 2020. Durability of hemp concretes exposed to accelerated environmental aging. Construction and Building Materials 252, 119043. https://doi.org/10.1016/j.conbuildmat.2020.119043.
DOI: 10.1016/j.conbuildmat.2020.119043
Google Scholar
[14]
Dhakal, U., Berardi, U., Gorgolewski, M., Richman, R., 2017. Hygrothermal performance of hempcrete for Ontario (Canada) buildings. Journal of Cleaner Production 142, 3655–3664. https://doi.org/10.1016/j.jclepro.2016.10.102.
DOI: 10.1016/j.jclepro.2016.10.102
Google Scholar
[15]
European Standard ISO 12572., 1997. Building materials – determination of water vapor transmission properties.
Google Scholar
[16]
Fernea, R., Manea, D.L., Plesa, L., Iernuțan, R., Dumitran, M., 2019. Acoustic and thermal properties of hemp-cement building materials. Procedia Manufacturing 32, 208–215. https://doi.org/10.1016/j.promfg.2019.02.204.
DOI: 10.1016/j.promfg.2019.02.204
Google Scholar
[17]
Glass, S., Sonebi, M., 2017. Investigation of mix composition hemp concrete on transport properties, mechanical properties and durability. In: 2nd International Conference on Bio-Based Building Materials & 1st Conference on ECOlogicalvalorisation of GRAnular and FIbrous Materials. Clermont-Ferrand, France.
Google Scholar
[18]
Jami, T., Karade, S.R., Singh, L.P., 2019. A review of the properties of hemp concrete for green building applications, Journal of Cleaner Production 239, 117852. https://doi.org/10.1016/j.jclepro.2019.117852.
DOI: 10.1016/j.jclepro.2019.117852
Google Scholar
[19]
Latif, E., Lawrence, M., Shea, A., Walker, P., 2015. Moisture buffer potential of experimental wall assemblies incorporating formulated hemp-lime. Building and Environment 93, 199–209. https://doi.org/10.1016/j.buildenv.2015.07.011.
DOI: 10.1016/j.buildenv.2015.07.011
Google Scholar
[20]
Marceau, S., Glé, P., Guéguen-Minerbe, M., Gourlay, E., Moscardelli, S., Nour, I., Amziane, S., 2017. Influence of accelerated aging on the properties of hemp concretes. Construction and Building Materials 139, 524–530. https://doi.org/10.1016/j.conbuildmat.2016.11.129.
DOI: 10.1016/j.conbuildmat.2016.11.129
Google Scholar
[21]
Melchert, L., 2005. The Dutch sustainable building policy: A model for developing countries. Building and Environment 42, 893–901. https://doi.org/10.1016/j.buildenv.2005.10.007.
DOI: 10.1016/j.buildenv.2005.10.007
Google Scholar
[22]
NFEN12664, 2001. Performance thermique des matériaux et produits pour le bâtiment - Détermination de la résistance thermique par la méthode de la plaque chaude gardée et la méthode fluxmétrique - Produits secs et humides de moyenne et basse résistance thermique.
DOI: 10.1007/bf02474022
Google Scholar
[23]
NFEN12667, 2001. Performance thermique des matériaux et produits pour le bâtiment - Détermination de la résistance thermique par la méthode de la plaque chaude gardée et la méthode fluxmétrique - Produits de haute et moyenne résistance thermique.
DOI: 10.1007/bf02474022
Google Scholar
[24]
Sassoni, E., Manzi, S., Motori, A., Montecchi, M., Canti, M., 2015. Experimental study on the physical-mechanical durability of innovative hemp-based composites for the building industry. Energy and Buildings 104, 316–322. https://doi.org/10.1016/j.enbuild.2015.07.022.
DOI: 10.1016/j.enbuild.2015.07.022
Google Scholar
[25]
Seng, B., Magniont, C., Lorente, S., 2019a. Characterization of a precast hemp concrete. Part I: Physical and thermal properties. Journal of Building Engineering 24. 100540 https://doi.org/10.1016/j.jobe.2018.07.016.
DOI: 10.1016/j.jobe.2018.07.016
Google Scholar
[26]
Seng, B., Magniont, C., Lorente, S., 2019b. Characterization of a precast hemp concrete block. Part II: Hygric properties. Journal of Building Engineering 24. 100579 https://doi.org/10.1016/j.jobe.2018.09.007.
DOI: 10.1016/j.jobe.2018.09.007
Google Scholar
[27]
Troppová, E., Švehlík, M., Tippner, J., Wimmer, R., 2015. Influence of temperature and moisture content on the thermal conductivity of wood-based fibreboards. Materials and Structures 48, 4077–4083. https://doi.org/10.1617/s11527-014-0467-4.
DOI: 10.1617/s11527-014-0467-4
Google Scholar
[28]
Walker, R., Pavia, S., Mitchell, R., 2014. Mechanical properties and durability of hemp-lime concretes. Construction and Building Materials 61, 340–348. https://doi.org/10.1016/j.conbuildmat.2014.02.065.
DOI: 10.1016/j.conbuildmat.2014.02.065
Google Scholar