Effect of Immersion/Freezing/Drying Cycles on the Hygrothermal and Mechanical Behaviour of Hemp Concrete

Article Preview

Abstract:

Hemp concrete is one of the most used bio-based materials in the construction industry due to its hygrothermal behaviour and its low environmental footprint. This is mainly due to the complexity of the microstructure of these materials and their highly breathable nature. However, their use remains limited due to the lack of databases and guarantees regarding of the evolution of their functional properties over time. In this paper, experimental investigation has been performed to answer this problematic. The aim is to investigate the influence of accelerated aging on the properties of this material through a succession of immersion/freezing/drying cycles. Materials (aged and reference) were characterized at the same relative humidity state in order to be able to compare the results and to highlight the effect of ageing on the properties of hemp concrete. Results revealed a significant change in the microstructure of this material. As a consequence, this induced significant changes in its hygrothermal and mechanical properties. An increase of 40% in water vapour permeability and decrease of 57% in compressive strength were observed after aging (07 cycles of immersion/freezing/drying).

You might also be interested in these eBooks

Info:

Pages:

555-562

Citation:

Online since:

January 2022

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2022 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Alioua, T., Agoudjil, B., Chennouf, N., Boudenne, A., Benzarti, K., 2019. Investigation on heat and moisture transfer in bio-based building wall with consideration of the hysteresis effect. Building and Environment 106333. https://doi.org/10.1016/j.buildenv.2019.106333.

DOI: 10.1016/j.buildenv.2019.106333

Google Scholar

[2] Amziane, S., Arnaud, L., 2013. Bio-aggregate-based building materials - Applications to hemp concretes. Wiley-ISTE, London. ISBN 978-1-84821-404-0.

DOI: 10.1002/9781118576809.ch7

Google Scholar

[3] AQC, 2018. Commission Prévention Produits Mise En Œuvre (C2P): Prévention des désordres liés aux produits et procédés de construction, Publication Semestrielle.

Google Scholar

[4] Benmahiddine, F., Bennai, F., Cherif, R., Belarbi, R., Tahakourt, A., ABAHRI, K., 2020a. Experimental investigation on the influence of immersion/drying cycles on the hygrothermal and mechanical properties of hemp concrete. Journal of Building Engineering 101758, 1–9. https://doi.org/10.1016/j.jobe.2020.101758.

DOI: 10.1016/j.jobe.2020.101758

Google Scholar

[5] Benmahiddine, F., Cherif, R., Bennai, F., Belarbi, R., Tahakourt, A., Abahri, K., 2020b. Effect of flax shives content and size on the hygrothermal and mechanical properties of flax concrete. Construction and Building Materials 262, 120077. https://doi.org/10.1016/j.conbuildmat.2020.120077.

DOI: 10.1016/j.conbuildmat.2020.120077

Google Scholar

[6] Bennai, F., 2017. Étude des mécanismes de transferts couplés de chaleur et d'humidité dans les matériaux poreux de construction en régime insaturé. Université de la Rochelle/Université de Bejaia.

DOI: 10.35219/foodtechnology.2020.1.09

Google Scholar

[7] Bennai, F., El Hachem, C., Abahri, K., Belarbi, R., 2019. Influence of hydric solicitations on the morphological behavior of hemp concrete. RILEM Technical Letters 4, 16–21. https://doi.org/10.21809/rilemtechlett.2019.80.

DOI: 10.21809/rilemtechlett.2019.80

Google Scholar

[8] Bennai, F., Issaadi, N., Abahri, K., Belarbi, R., Tahakourt, A., 2017. Experimental characterization of thermal and hygric properties of hemp concrete with consideration of the material age evolution. Heat Mass Transfer 54, 1189–1197. https://doi.org/10.1007/s00231-017-2221-2.

DOI: 10.1007/s00231-017-2221-2

Google Scholar

[9] Brzyski, P., Barnat-Hunek, D., Suchorab, Z., Lagód, G., 2017. Composite materials based on hemp and flax for low-energy buildings. Materials 10, 510. https://doi.org/10.3390/ma10050510.

DOI: 10.3390/ma10050510

Google Scholar

[10] Chabannes, M., Becquart, F., Garcia-Diaz, E., Abriak, N.E., Clerc, L., 2017. Experimental investigation of the shear behaviour of hemp and rice husk-based concretes using triaxial compression. Construction and Building Materials 143, 621–632. https://doi.org/10.1016/j.conbuildmat.2017.03.148.

DOI: 10.1016/j.conbuildmat.2017.03.148

Google Scholar

[11] Colinart, T., Glouannec, P., 2017. Temperature dependence of sorption isotherm of hygroscopic building materials. Part 1: Experimental evidence and modeling. Energy and Buildings 139, 360–370. https://doi.org/10.1016/j.enbuild.2016.12.082.

DOI: 10.1016/j.enbuild.2016.12.082

Google Scholar

[12] Collet, F., Pretot, S., 2012. Effect of coating on moisture buffering of hemp concrete, in: Second International Conference on Building Energy and Environment, August 1–4, 2012, Boulder, Colorado.

Google Scholar

[13] Delannoy, G., Marceau, S., Glé, P., Gourlay, E., Guéguen-Minerbe, M., Amziane, S., Farcas, F., 2020. Durability of hemp concretes exposed to accelerated environmental aging. Construction and Building Materials 252, 119043. https://doi.org/10.1016/j.conbuildmat.2020.119043.

DOI: 10.1016/j.conbuildmat.2020.119043

Google Scholar

[14] Dhakal, U., Berardi, U., Gorgolewski, M., Richman, R., 2017. Hygrothermal performance of hempcrete for Ontario (Canada) buildings. Journal of Cleaner Production 142, 3655–3664. https://doi.org/10.1016/j.jclepro.2016.10.102.

DOI: 10.1016/j.jclepro.2016.10.102

Google Scholar

[15] European Standard ISO 12572., 1997. Building materials – determination of water vapor transmission properties.

Google Scholar

[16] Fernea, R., Manea, D.L., Plesa, L., Iernuțan, R., Dumitran, M., 2019. Acoustic and thermal properties of hemp-cement building materials. Procedia Manufacturing 32, 208–215. https://doi.org/10.1016/j.promfg.2019.02.204.

DOI: 10.1016/j.promfg.2019.02.204

Google Scholar

[17] Glass, S., Sonebi, M., 2017. Investigation of mix composition hemp concrete on transport properties, mechanical properties and durability. In: 2nd International Conference on Bio-Based Building Materials & 1st Conference on ECOlogicalvalorisation of GRAnular and FIbrous Materials. Clermont-Ferrand, France.

Google Scholar

[18] Jami, T., Karade, S.R., Singh, L.P., 2019. A review of the properties of hemp concrete for green building applications, Journal of Cleaner Production 239, 117852. https://doi.org/10.1016/j.jclepro.2019.117852.

DOI: 10.1016/j.jclepro.2019.117852

Google Scholar

[19] Latif, E., Lawrence, M., Shea, A., Walker, P., 2015. Moisture buffer potential of experimental wall assemblies incorporating formulated hemp-lime. Building and Environment 93, 199–209. https://doi.org/10.1016/j.buildenv.2015.07.011.

DOI: 10.1016/j.buildenv.2015.07.011

Google Scholar

[20] Marceau, S., Glé, P., Guéguen-Minerbe, M., Gourlay, E., Moscardelli, S., Nour, I., Amziane, S., 2017. Influence of accelerated aging on the properties of hemp concretes. Construction and Building Materials 139, 524–530. https://doi.org/10.1016/j.conbuildmat.2016.11.129.

DOI: 10.1016/j.conbuildmat.2016.11.129

Google Scholar

[21] Melchert, L., 2005. The Dutch sustainable building policy: A model for developing countries. Building and Environment 42, 893–901. https://doi.org/10.1016/j.buildenv.2005.10.007.

DOI: 10.1016/j.buildenv.2005.10.007

Google Scholar

[22] NFEN12664, 2001. Performance thermique des matériaux et produits pour le bâtiment - Détermination de la résistance thermique par la méthode de la plaque chaude gardée et la méthode fluxmétrique - Produits secs et humides de moyenne et basse résistance thermique.

DOI: 10.1007/bf02474022

Google Scholar

[23] NFEN12667, 2001. Performance thermique des matériaux et produits pour le bâtiment - Détermination de la résistance thermique par la méthode de la plaque chaude gardée et la méthode fluxmétrique - Produits de haute et moyenne résistance thermique.

DOI: 10.1007/bf02474022

Google Scholar

[24] Sassoni, E., Manzi, S., Motori, A., Montecchi, M., Canti, M., 2015. Experimental study on the physical-mechanical durability of innovative hemp-based composites for the building industry. Energy and Buildings 104, 316–322. https://doi.org/10.1016/j.enbuild.2015.07.022.

DOI: 10.1016/j.enbuild.2015.07.022

Google Scholar

[25] Seng, B., Magniont, C., Lorente, S., 2019a. Characterization of a precast hemp concrete. Part I: Physical and thermal properties. Journal of Building Engineering 24. 100540 https://doi.org/10.1016/j.jobe.2018.07.016.

DOI: 10.1016/j.jobe.2018.07.016

Google Scholar

[26] Seng, B., Magniont, C., Lorente, S., 2019b. Characterization of a precast hemp concrete block. Part II: Hygric properties. Journal of Building Engineering 24. 100579 https://doi.org/10.1016/j.jobe.2018.09.007.

DOI: 10.1016/j.jobe.2018.09.007

Google Scholar

[27] Troppová, E., Švehlík, M., Tippner, J., Wimmer, R., 2015. Influence of temperature and moisture content on the thermal conductivity of wood-based fibreboards. Materials and Structures 48, 4077–4083. https://doi.org/10.1617/s11527-014-0467-4.

DOI: 10.1617/s11527-014-0467-4

Google Scholar

[28] Walker, R., Pavia, S., Mitchell, R., 2014. Mechanical properties and durability of hemp-lime concretes. Construction and Building Materials 61, 340–348. https://doi.org/10.1016/j.conbuildmat.2014.02.065.

DOI: 10.1016/j.conbuildmat.2014.02.065

Google Scholar