A Dual-Scale Numerical Model for the Diffusive Behaviour Prediction of Biocomposites Based on Randomly Oriented Fibres

Article Preview

Abstract:

This work aims to present a multi-scale numerical approach based on a 2D finite element model to simulate the diffusive behaviour of biocomposites based on randomly dispersed Diss fibres during ageing in water. So, first of all, the diffusive behaviour of each phase (fibres/matrix) as well as of the biocomposite was determined experimentally. Secondly, the microstructure of the biocomposite was observed by optical microscope and scanning electron microscope (SEM), and then regenerated in a Digimat finite element calculation software thanks to its own fibre generator: "Random fibre placement". Finally, the diffusion problem based on Fick's law was solved on the Abaqus finite element calculation software. The results showed an excellent agreement between the experiment and the numerical model. The numerical model has enabled a better understanding of the diffusive behaviour of water within the biocomposite, in particular the effect of the fibre/matrix interface. In terms of durability, the layered structure of this biocomposite has proven to be effective in protecting the plant fibres from hydrothermal transfer, which preserves the durability of the material.

You might also be interested in these eBooks

Info:

Pages:

584-587

Citation:

Online since:

January 2022

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2022 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Achour, A., Ghomari, F., Belayachi, N., 2017. Properties of cementitious mortars reinforced with natural fibers. Journal of Adhesion Science and Technology 31, 1938–1962. https://doi.org/10.1080/01694243. 2017.1290572.

DOI: 10.1080/01694243.2017.1290572

Google Scholar

[2] Berges, M., 2018. Mécanismes de dégradation sous sollicitations hydrothermomécaniques de biocomposites et renforts en fibres végétales : application au développement de mobiliers urbains ultralégers et mobiles (thesis). Bourgogne Franche-Comté.

Google Scholar

[3] Chilali, A., 2017. Étude expérimentale et modélisation de la durabilité des biocomposites à fibres de lin (thesis). Reims.

Google Scholar

[4] DAMERDJI, A., 2012. Les Orthoptéroïdes sur différentes plantes dans la région de Tlemcen (Algérie. Afrique SCIENCE, 131 82–92.

Google Scholar

[5] Duval, C., 2004. Polypropylènes (PP) 23.

Google Scholar

[6] Guessasma, S., Bassir, D., Hedjazi, L., 2015. Influence of interphase properties on the effective behaviour of a starch-hemp composite. Materials and Design 65, 1053–1063. https://doi.org/10.1016/j.matdes. 2014.10.031.

DOI: 10.1016/j.matdes.2014.10.031

Google Scholar

[7] Guessasma, S., Benseddiq, N., Lourdin, D., 2010. Effective Young's modulus of biopolymer composites with imperfect interface. International Journal of Solids and Structures 47, 2436–2444. https://doi.org/10.1016/j.ijsolstr.2010.05.002.

DOI: 10.1016/j.ijsolstr.2010.05.002

Google Scholar

[8] Jain, D., Kamboj, I., Bera, T.K., Kang, A.S., Singla, R.K., 2019. Experimental and numerical investigations on the effect of alkaline hornification on the hydrothermal ageing of Agave natural fiber composites. International Journal of Heat and Mass Transfer 130, 431–439. https://doi.org/10.1016/j.ijheatmasstransfer.2018.10.106.

DOI: 10.1016/j.ijheatmasstransfer.2018.10.106

Google Scholar

[9] Jiang, N., Li, Yaomin, Li, D., Yu, T., Li, Yan, Xu, J., Li, N., Marrow, T.J., 2020. 3D finite element modeling of water diffusion behavior of jute/PLA composite based on X-ray computed tomography. Composites Science and Technology 199, 108313. https://doi.org/10.1016/j.compscitech.2020.108313.

DOI: 10.1016/j.compscitech.2020.108313

Google Scholar

[10] Nouri, M., Griballah, I., Tahlaiti, M., Grondin, F., Beaugrand, J., 2019. Plant Extraction and Physicochemical Characterizations of Untreated and Pretreated Diss Fibers (Ampelodesmos mauritanicus). Journal of Natural Fibers 0, 1–11. https://doi.org/10.1080/15440478.2019.1687062.

DOI: 10.1080/15440478.2019.1687062

Google Scholar

[11] Nouri, M., Tahlaiti, M., Grondin, F., Belarbi, R., 2020. The Influence of Chemical and Thermal Treatments on the Diss Fiber Hygroscopic Behaviors. Journal of Natural Fibers 0, 1–14. https://doi.org/10.1080/15440478.2020.1848733.

DOI: 10.1080/15440478.2020.1848733

Google Scholar

[12] Rameau, J.-C., Mansion, D., Dumé, G., 1989. Flore forestière française: Région Méditerranéenne, 133. Forêt privée française.

Google Scholar

[13] Rjafiallah, S., Benseddiq, N., Guessasma, S., 2010. Effect of interface properties on the effective properties of biopolymer composite materials. Materialwissenschaft und Werkstofftechnik 41, 265–269. https://doi.org/10.1002/mawe.201000595.

DOI: 10.1002/mawe.201000595

Google Scholar

[14] Rjafiallah, S., Guessasma, S., 2010. Effect of Silicone Carbide on the Elastic Properties of Starch-Based Composites: A Three-Phase Model. Macromolecular Materials and Engineering 295, 1116–1124. https://doi.org/10.1002/mame.201000254.

DOI: 10.1002/mame.201000254

Google Scholar

[15] Tabone, M.D., Cregg, J.J., Beckman, E.J., Landis, A.E., 2010. Sustainability Metrics: Life Cycle Assessment and Green Design in Polymers. Environmental Science & Technology 44, 8264–8269. https://doi.org/10.1021/es101640n.

DOI: 10.1021/es101640n

Google Scholar