[1]
Achour, A., Ghomari, F., Belayachi, N., 2017. Properties of cementitious mortars reinforced with natural fibers. Journal of Adhesion Science and Technology 31, 1938–1962. https://doi.org/10.1080/01694243. 2017.1290572.
DOI: 10.1080/01694243.2017.1290572
Google Scholar
[2]
Berges, M., 2018. Mécanismes de dégradation sous sollicitations hydrothermomécaniques de biocomposites et renforts en fibres végétales : application au développement de mobiliers urbains ultralégers et mobiles (thesis). Bourgogne Franche-Comté.
Google Scholar
[3]
Chilali, A., 2017. Étude expérimentale et modélisation de la durabilité des biocomposites à fibres de lin (thesis). Reims.
Google Scholar
[4]
DAMERDJI, A., 2012. Les Orthoptéroïdes sur différentes plantes dans la région de Tlemcen (Algérie. Afrique SCIENCE, 131 82–92.
Google Scholar
[5]
Duval, C., 2004. Polypropylènes (PP) 23.
Google Scholar
[6]
Guessasma, S., Bassir, D., Hedjazi, L., 2015. Influence of interphase properties on the effective behaviour of a starch-hemp composite. Materials and Design 65, 1053–1063. https://doi.org/10.1016/j.matdes. 2014.10.031.
DOI: 10.1016/j.matdes.2014.10.031
Google Scholar
[7]
Guessasma, S., Benseddiq, N., Lourdin, D., 2010. Effective Young's modulus of biopolymer composites with imperfect interface. International Journal of Solids and Structures 47, 2436–2444. https://doi.org/10.1016/j.ijsolstr.2010.05.002.
DOI: 10.1016/j.ijsolstr.2010.05.002
Google Scholar
[8]
Jain, D., Kamboj, I., Bera, T.K., Kang, A.S., Singla, R.K., 2019. Experimental and numerical investigations on the effect of alkaline hornification on the hydrothermal ageing of Agave natural fiber composites. International Journal of Heat and Mass Transfer 130, 431–439. https://doi.org/10.1016/j.ijheatmasstransfer.2018.10.106.
DOI: 10.1016/j.ijheatmasstransfer.2018.10.106
Google Scholar
[9]
Jiang, N., Li, Yaomin, Li, D., Yu, T., Li, Yan, Xu, J., Li, N., Marrow, T.J., 2020. 3D finite element modeling of water diffusion behavior of jute/PLA composite based on X-ray computed tomography. Composites Science and Technology 199, 108313. https://doi.org/10.1016/j.compscitech.2020.108313.
DOI: 10.1016/j.compscitech.2020.108313
Google Scholar
[10]
Nouri, M., Griballah, I., Tahlaiti, M., Grondin, F., Beaugrand, J., 2019. Plant Extraction and Physicochemical Characterizations of Untreated and Pretreated Diss Fibers (Ampelodesmos mauritanicus). Journal of Natural Fibers 0, 1–11. https://doi.org/10.1080/15440478.2019.1687062.
DOI: 10.1080/15440478.2019.1687062
Google Scholar
[11]
Nouri, M., Tahlaiti, M., Grondin, F., Belarbi, R., 2020. The Influence of Chemical and Thermal Treatments on the Diss Fiber Hygroscopic Behaviors. Journal of Natural Fibers 0, 1–14. https://doi.org/10.1080/15440478.2020.1848733.
DOI: 10.1080/15440478.2020.1848733
Google Scholar
[12]
Rameau, J.-C., Mansion, D., Dumé, G., 1989. Flore forestière française: Région Méditerranéenne, 133. Forêt privée française.
Google Scholar
[13]
Rjafiallah, S., Benseddiq, N., Guessasma, S., 2010. Effect of interface properties on the effective properties of biopolymer composite materials. Materialwissenschaft und Werkstofftechnik 41, 265–269. https://doi.org/10.1002/mawe.201000595.
DOI: 10.1002/mawe.201000595
Google Scholar
[14]
Rjafiallah, S., Guessasma, S., 2010. Effect of Silicone Carbide on the Elastic Properties of Starch-Based Composites: A Three-Phase Model. Macromolecular Materials and Engineering 295, 1116–1124. https://doi.org/10.1002/mame.201000254.
DOI: 10.1002/mame.201000254
Google Scholar
[15]
Tabone, M.D., Cregg, J.J., Beckman, E.J., Landis, A.E., 2010. Sustainability Metrics: Life Cycle Assessment and Green Design in Polymers. Environmental Science & Technology 44, 8264–8269. https://doi.org/10.1021/es101640n.
DOI: 10.1021/es101640n
Google Scholar