Plant Biomass Used for Green Concrete: A Review of Treatment Methods

Article Preview

Abstract:

Human activities require a growing need for raw materials. In order to contribute to sustainable development, many business sectors are focusing on biomass valorization. Whether from dedicated crops or first industrial processing, it generates materials with high potential that can be used in many fields. Non-food uses mainly concern the energy, chemical, and construction sectors. Whatever the intended application, a pre-treatment stage is essential to clean the material and/or to access a specific fraction. An additional modification may occur in order to endow the material with a new function thanks to a process known as functionalization. Uses of plant fractions (aggregates) in combination with cement offer advantages like low-density materials with attractive thermophysical properties for building. However, their development is limited by the compatibility of crop by-products with hydraulic binders such as Ordinary Portland Cement (OPC). This includes delays in setting time and hydrophilic character of vegetal components and their interaction with an alkaline environment. The aggregate/cement interfaces can therefore be strongly affected. In addition, the diversity of crop by-products and mineral binders increases the level of complexity. In order to overcome these drawbacks, the treatment of plant fractions before their use with mineral binders may result in significant benefits. In this way, various treatments have been tested, but the methods used at an industrial scale remain relatively under-researched. The purpose of this review is therefore to highlight the mechanisms involved in each specific process, thus justifying the operating conditions specific to each. This bibliography study aims to highlight potential treatments that could apply to biomass before their mixing with cementitious binders. According to the objective, a distinction can be made between extraction processes as hydrothermal or solvent treatments, assisted or not, and structural modification processes as surface treatments, impregnation, or grafting.

You might also be interested in these eBooks

Info:

Pages:

601-611

Citation:

Online since:

January 2022

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2022 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] ADEME, 2013. Chiffres clés du bâtiment.

Google Scholar

[2] Ahmad, S., Lawan, A., Al-Osta, M., 2020. Effect of sugar dosage on setting time, microstructure and strength of Type I and Type V Portland cements. Case Stud. Constr. Mater. 13, e00364.

DOI: 10.1016/j.cscm.2020.e00364

Google Scholar

[3] Arumugam, N., Biely, P., Puchart, V., Singh, S., Pillai, S., 2018. Structure of peanut shell xylan and its conversion to oligosaccharides. Process Biochem. 72, 124–129.

DOI: 10.1016/j.procbio.2018.06.024

Google Scholar

[4] Azwa, Z.N., Yousif, B.F., Manalo, A.C., Karunasena, W., 2013. A review on the degradability of polymeric composites based on natural fibres. Mater. Des. 47, 424–442.

DOI: 10.1016/j.matdes.2012.11.025

Google Scholar

[5] Bajpai, P., 2021. Types of lignins and characteristics, in: Carbon Fiber. Elsevier, p.51–66.

Google Scholar

[6] Baley, C., 2020. Fibres naturelles de renfort pour matériaux composites. Tech. l'ingénieur.

DOI: 10.51257/a-v3-am5130

Google Scholar

[7] Bederina, M., Belhadj, B., Ammari, M.S., Gouilleux, A., Makhloufi, Z., Montrelay, N., Quéneudéc, M., 2016. Improvement of the properties of a sand concrete containing barley straws - Treatment of the barley straws. Constr. Build. Mater. 115, 464–477.

DOI: 10.1016/j.conbuildmat.2016.04.065

Google Scholar

[8] Bederina, M., Gotteicha, M., Belhadj, B., Dheily, R.M., Khenfer, M.M., Queneudec, M., 2012. Drying shrinkage studies of wood sand concrete - Effect of different wood treatments. Constr. Build. Mater. 36, 1066–1075.

DOI: 10.1016/j.conbuildmat.2012.06.010

Google Scholar

[9] Boix, E., Gineau, E., Narciso, J.O., Höfte, H., Mouille, G., Navard, P., 2020. Influence of chemical treatments of miscanthus stem fragments on polysaccharide release in the presence of cement and on the mechanical properties of bio-based concrete materials. Cem. Concr. Compos. 105, 103429.

DOI: 10.1016/j.cemconcomp.2019.103429

Google Scholar

[10] Carrero-Carralero, C., Mansukhani, D., Ruiz-Matute, A.I., Martínez-Castro, I., Ramos, L., Sanz, M.L., 2018. Extraction and characterization of low molecular weight bioactive carbohydrates from mung bean (Vigna radiata). Food Chem. 266, 146–154.

DOI: 10.1016/j.foodchem.2018.05.114

Google Scholar

[11] Catena, S., Rakotomanomana, N., Zunin, P., Boggia, R., Turrini, F., Chemat, F., 2020. Solubility study and intensification of extraction of phenolic and anthocyanin compounds from Oryza sativa L. Violet Nori., Ultrason. Sonochem. 68, 105231.

DOI: 10.1016/j.ultsonch.2020.105231

Google Scholar

[12] Chen, Y., Yang, H., Zou, H., Sun, T., Li, M., Zhai, J., He, Q., Gu, L., Tang, W.Z., 2020. Effects of acid/alkali pretreatments on lignocellulosic biomass mono-digestion and its co-digestion with waste activated sludge. J. Clean. Prod. 277, 123998.

DOI: 10.1016/j.jclepro.2020.123998

Google Scholar

[13] CODEM, 2021. Guide de la rénovation à l'aide de matériaux biosourcés.

Google Scholar

[14] da Gloria, M.Y.R., Andreola, V.M., dos Santos, D.O.J., Pepe, M., Toledo Filho, R.D., 2021. A comprehensive approach for designing workable bio-based cementitious composites. J. Build. Eng. 34, 101696.

DOI: 10.1016/j.jobe.2020.101696

Google Scholar

[15] de Klerk, M.D., Kayondo, M., Moelich, G.M., de Villiers, W.I., Combrinck, R., Boshoff, W.P., 2020. Durability of chemically modified sisal fibre in cement-based composites. Constr. Build. Mater. 241, 117835.

DOI: 10.1016/j.conbuildmat.2019.117835

Google Scholar

[16] Delannoy, G., 2018. Durabilité d'isolants à base de granulats végétaux. Université Paris-Est, France.

Google Scholar

[17] Diquélou, Y., Gourlay, E., Arnaud, L., Kurek, B., 2016. Influence of binder characteristics on the setting and hardening of hemp lightweight concrete. Constr. Build. Mater. 112, 506–517.

DOI: 10.1016/j.conbuildmat.2016.02.138

Google Scholar

[18] Doudart de la Grée, G.C.H., Yu, Q.L., Brouwers, H.J.H., 2017. Assessing the effect of CaSO4 content on the hydration kinetics, microstructure and mechanical properties of cements containing sugars. Constr. Build. Mater. 143, 48–60.

DOI: 10.1016/j.conbuildmat.2017.03.067

Google Scholar

[19] Dziurka, D., Mirski, R., Łęcka, J., 2005. Properties of boards manufactured from rape straw depending on the type of the binding agent. J. polish Agric. Univ. 8.

Google Scholar

[20] Etienne, A., 1965. Extraction solide-liquide. Tech. l'ingénieur.

Google Scholar

[21] Farooqi, M.U., Ali, M., 2019. Effect of pre-treatment and content of wheat straw on energy absorption capability of concrete. Constr. Build. Mater. 224, 572–583.

DOI: 10.1016/j.conbuildmat.2019.07.086

Google Scholar

[22] FRD, 2020. Panorama des marchés Fibres végétales techniques en matériaux, (hors bois) en France.

Google Scholar

[23] FRD, 2019. Etude du potentiel de developpement des bétons végétaux en France.

Google Scholar

[24] FRD, 2011. Evaluation de la disponibilité et de l'accessibilité de fibres végétales à usages matériaux en France.

Google Scholar

[25] Fu, Z., Zhou, Y., Gao, X., Liu, H., Zhou, F., 2019. Changes of water related properties in radiata pine wood due to heat treatment. Constr. Build. Mater. 227, 116692.

DOI: 10.1016/j.conbuildmat.2019.116692

Google Scholar

[26] Ghavami, K., 2005. Bamboo as reinforcement in structural concrete elements. Cem. Concr. Compos. 27, 637–649.

DOI: 10.1016/j.cemconcomp.2004.06.002

Google Scholar

[27] Giombelli, C., Iwassa, I.J., da Silva, C., Bolanho Barros, B.C., 2020. Valorization of peach palm by-product through subcritical water extraction of soluble sugars and phenolic compounds. J. Supercrit. Fluids 165, 104985.

DOI: 10.1016/j.supflu.2020.104985

Google Scholar

[28] Golestani, J., 2020. Extraction of hemicelluloses from softwood and hardwood cellulosic fibers by enzymatic treatments.

Google Scholar

[29] Govin, A., 2004. Aspects physico-chimiques de l'interaction bois - ciment Modification de l'hydratation du ciment par le bois 216.

Google Scholar

[30] Gupta, S., Krishnan, P., Kashani, A., Kua, H.W., 2020. Application of biochar from coconut and wood waste to reduce shrinkage and improve physical properties of silica fume-cement mortar. Constr. Build. Mater. 262, 120688.

DOI: 10.1016/j.conbuildmat.2020.120688

Google Scholar

[31] Hajj, R., Modification, P. De, Imt, M., 2019. Procédés de Modification des Fibres naturelles ( PROMOF ).

Google Scholar

[32] Hussain, A., Calabria-Holley, J., Lawrence, M., Jiang, Y., 2019. Resilient hemp shiv aggregates with engineered hygroscopic properties for the building industry. Constr. Build. Mater. 212, 247–253.

DOI: 10.1016/j.conbuildmat.2019.03.327

Google Scholar

[33] IFP, INRA, ARD, 2018. Procédé de traitement de biomasse ligno-cellulosique par imprégnation et explosion à la vapeur. WO 2018/015227 Al.

Google Scholar

[34] Juárez, C., Durán, A., Valdez, P., Fajardo, G., 2007. Performance of Agave lecheguilla, natural fiber in portland cement composites exposed to severe environment conditions. Build. Environ. 42, 1151–1157.

DOI: 10.1016/j.buildenv.2005.12.005

Google Scholar

[35] Kushwaha, P.K., Kumar, R., 2009. Studies on Water Absorption of Bamboo-Polyester Composites: Effect of Silane Treatment of Mercerized Bamboo. Polym. Plast. Technol. Eng. 49, 45–52.

DOI: 10.1080/03602550903283026

Google Scholar

[36] Le Ngoc Huyen, T., Queneudec T'Kint, M., Remond, C., Chabbert, B., Dheilly, R.M., 2011. Saccharification of Miscanthus x giganteus, incorporation of lignocellulosic by-product in cementitious matrix. C. R. Biol.

DOI: 10.1016/j.crvi.2011.07.008

Google Scholar

[37] Li, Jinbao, Feng, P., Xiu, H., Zhang, M., Li, Jingyu, Du, M., Zhang, X., Kozliak, E., Ji, Y., 2020. Wheat straw components fractionation, with efficient delignification, by hydrothermal treatment followed by facilitated ethanol extraction. Bioresour. Technol. 316, 123882.

DOI: 10.1016/j.biortech.2020.123882

Google Scholar

[38] Li, M., Wang, J., Yang, Y., Xie, G., 2016. Alkali-based pretreatments distinctively extract lignin and pectin for enhancing biomass saccharification by altering cellulose features in sugar-rich Jerusalem artichoke stem. Bioresour. Technol. 208, 31–41.

DOI: 10.1016/j.biortech.2016.02.053

Google Scholar

[39] Ni, C., Wu, Q., Yu, Z., Shen, X., 2021. Hydration of Portland cement paste mixed with densified silica fume: From the point of view of fineness. Constr. Build. Mater. 272, 121906.

DOI: 10.1016/j.conbuildmat.2020.121906

Google Scholar

[40] Page, J., 2017. Formulation et caractérisation d'un composite cimentaire biofibré pour des procédés de construction préfabriquée. Université de Caen Normandie, France.

Google Scholar

[41] Quiroga, A., Marzocchi, V., Rintoul, I., 2016. Influence of wood treatments on mechanical properties of wood-cement composites and of Populus Euroamericana wood fibers. Compos. Part B Eng. 84, 25–32.

DOI: 10.1016/j.compositesb.2015.08.069

Google Scholar

[42] Rajha, H.N., Abi-Khattar, A.M., El Kantar, S., Boussetta, N., Lebovka, N., Maroun, R.G., Louka, N., Vorobiev, E., 2019. Comparison of aqueous extraction efficiency and biological activities of polyphenols from pomegranate peels assisted by infrared, ultrasound, pulsed electric fields and high-voltage electrical discharges. Innov. Food Sci. Emerg. Technol. 58, 102212.

DOI: 10.1016/j.ifset.2019.102212

Google Scholar

[43] Rayo-Mendez, L.M., Gómez, A.V., Tadini, C.C., 2019. Extraction of soluble sugars from banana puree to obtain a matrix rich in non-starch polysaccharides. Food Chem. 294, 539–546.

DOI: 10.1016/j.foodchem.2019.05.079

Google Scholar

[44] Ren, J.L., Sun, R.C., 2010. Hemicelluloses, in: Cereal Straw as a Resource for Sustainable Biomaterials and Biofuels. Elsevier, p.73–130.

DOI: 10.1016/b978-0-444-53234-3.00004-3

Google Scholar

[45] Reungoat, V., Gaudin, M., Flourat, A.L., Isidore, E., Mouterde, L.M.M., Allais, F., Ducatel, H., Ioannou, I., 2020. Optimization of an ethanol/water-based sinapine extraction from mustard bran using Response Surface Methodology. Food Bioprod. Process. 122, 322–331.

DOI: 10.1016/j.fbp.2020.06.001

Google Scholar

[46] Ross, K., Mazza, G., 2010. Characteristics of lignin from flax shives as affected by extraction conditions. Int. J. Mol. Sci. 11, 4035–4050.

DOI: 10.3390/ijms11104035

Google Scholar

[47] Sabarinathan, P., Rajkumar, K., Annamalai, V.E., Vishal, K., 2020. Characterization on chemical and mechanical properties of silane treated fish tail palm fibres. Int. J. Biol. Macromol. 163, 2457–2464.

DOI: 10.1016/j.ijbiomac.2020.09.159

Google Scholar

[48] Sedan, D., 2007. Etude des interactions physico-chimiques aux interfaces fibres de chanvre/ciment. Influence sur les propriétés mécaniques du composite. Thèse Dr. Univ. Limoge 129.

DOI: 10.1051/mattech:2007038

Google Scholar

[49] Sellami, A., Merzoud, M., Amziane, S., 2013. Improvement of mechanical properties of green concrete by treatment of the vegetals fibers. Constr. Build. Mater. 47, 1117–1124.

DOI: 10.1016/j.conbuildmat.2013.05.073

Google Scholar

[50] Senthilraja, R., Sarala, R., Godwin Antony, A., Seshadhri, 2020. Effect of acetylation technique on mechanical behavior and durability of palm fibre vinyl-ester composites, in: Materials Today: Proceedings. Elsevier Ltd, p.634–637.

DOI: 10.1016/j.matpr.2019.06.729

Google Scholar

[51] Shanks, R.A., 2013. Chemistry and structure of cellulosic fibres as reinforcements in natural fibre composites, in: Natural Fibre Composites: Materials, Processes and Applications. Elsevier Inc., p.66–83.

DOI: 10.1533/9780857099228.1.66

Google Scholar

[52] Singh, R.D., Banerjee, J., Sasmal, S., Muir, J., Arora, A., 2018. High xylan recovery using two stage alkali pre-treatment process from high lignin biomass and its valorisation to xylooligosaccharides of low degree of polymerisation. Bioresour. Technol. 256, 110–117.

DOI: 10.1016/j.biortech.2018.02.009

Google Scholar

[53] Thomas, N.L., Birchall, J.D., 1983. The retarding action of sugars on cement hydration. Cem. Concr. Res. 13, 830–842.

DOI: 10.1016/0008-8846(83)90084-4

Google Scholar

[54] Tolêdo Romildo D., F.D., Ghavami, K., England, G.L., Scrivener, K., 2003. Development of vegetable fibre-mortar composites of improved durability. Cem. Concr. Compos. 25, 185–196.

DOI: 10.1016/s0958-9465(02)00018-5

Google Scholar

[55] Tonoli, G.H.D., Belgacem, M.N., Bras, J., Pereira-Da-Silva, M.A., Rocco Lahr, F.A., Savastano, H., 2012. Impact of bleaching pine fibre on the fibre/cement interface. J. Mater. Sci. 47, 4167–4177.

DOI: 10.1007/s10853-012-6271-z

Google Scholar

[56] Viel, M., Collet, F., Lanos, C., 2018. Chemical and multi-physical characterization of agro-resources' by-product as a possible raw building material. Ind. Crops Prod. 120, 214–237.

DOI: 10.1016/j.indcrop.2018.04.025

Google Scholar

[57] Vo, L.T.T., Navard, P., 2016. Treatments of plant biomass for cementitious building materials – A review. Constr. Build. Mater.

Google Scholar

[58] Wang, S., Liu, C., Liu, G., Zhang, M., Li, J., Wang, C., 2011. Fabrication of superhydrophobic wood surface by a sol-gel process. Appl. Surf. Sci. 258, 806–810.

DOI: 10.1016/j.apsusc.2011.08.100

Google Scholar

[59] Wu, F., Yu, Q., Liu, C., 2021. Durability of thermal insulating bio-based lightweight concrete: Understanding of heat treatment on bio-aggregates. Constr. Build. Mater. 269, 121800.

DOI: 10.1016/j.conbuildmat.2020.121800

Google Scholar

[60] Wu, F., Yu, Q., Liu, C., Brouwers, H.J.H., Wang, L., 2019. Effect of surface treatment of apricot shell on the performance of lightweight bio-concrete. Constr. Build. Mater. 229, 116859.

DOI: 10.1016/j.conbuildmat.2019.116859

Google Scholar

[61] Yuan, Y., Zou, P., Zhou, J., Geng, Y., Fan, J., Clark, J., Li, Y., Zhang, C., 2019. Microwave-assisted hydrothermal extraction of non-structural carbohydrates and hemicelluloses from tobacco biomass. Carbohydr. Polym. 223, 115043.

DOI: 10.1016/j.carbpol.2019.115043

Google Scholar

[62] Yuan, Z., Li, G., Wei, W., Wang, J., Fang, Z., 2020. A comparison of different pre-extraction methods followed by steam pretreatment of bamboo to improve the enzymatic digestibility and ethanol production. Energy 196, 117156.

DOI: 10.1016/j.energy.2020.117156

Google Scholar