[1]
Barbero-Barrera, M.D.M., Pombo, O., Navacerrada, M.D.L.Á., 2016. Textile fibre waste bindered with natural hydraulic lime. Compos. Part B Eng. 94, 26–33. doi.org/10.1016/j.compositesb.2016.03.013.
DOI: 10.1016/j.compositesb.2016.03.013
Google Scholar
[2]
Barbero-Barrera, M.M., Flores Medina, N., Guardia-Martín, C., 2017. Influence of the addition of waste graphite powder on the physical and microstructural performance of hydraulic lime pastes. Constr. Build. Mater. 149, 599–611. doi.org/10.1016/j.conbuildmat.2017.05.156.
DOI: 10.1016/j.conbuildmat.2017.05.156
Google Scholar
[3]
Barbero-Barrera, M.M., García-Santos, A., Neila-González, F.J., 2014. Thermal conductivity of lime mortars and calcined diatoms. Parameters influencing their performance and comparison with the traditional lime and mortars containing crushed marble used as renders. Energy Build. 76, 422–428. doi.org/10.1016/J.ENBUILD.2014.02.065.
DOI: 10.1016/j.enbuild.2014.02.065
Google Scholar
[4]
Belakroum, R., Gherfi, A., Kadja, M., Maalouf, C., Lachi, M., El Wakil, N., Mai, T.H., 2018. Design and properties of a new sustainable construction material based on date palm fibers and lime. Constr. Build. Mater. 184, 330–343. doi.org/10.1016/j.conbuildmat.2018.06.196.
DOI: 10.1016/j.conbuildmat.2018.06.196
Google Scholar
[5]
Bruno, A.W., Gallipoli, D., Perlot, C., Mendes, J., 2017. Effect of stabilisation on mechanical properties, moisture buffering and water durability of hypercompacted earth. Constr. Build. Mater. 149, 733–740. doi.org/10.1016/j.conbuildmat.2017.05.182.
DOI: 10.1016/j.conbuildmat.2017.05.182
Google Scholar
[6]
Carrajola, R., Hawreen, A., Flores-Colen, I., de Brito, J., 2020. Fresh properties of cement-based thermal renders with fly ash, air lime and lightweight aggregates. J. Build. Eng. 101868. doi.org/10.1016/j.jobe.2020.101868.
DOI: 10.1016/j.jobe.2020.101868
Google Scholar
[7]
Centauro, I., Cantisani, E., Grandin, C., Salvini, A., Vettori, S., 2017. The influence of natural organic materials on the properties of traditional lime-based mortars. Int. J. Archit. Herit. 11, 670–684. doi.org/10.1080/15583058.2017.1287978.
DOI: 10.1080/15583058.2017.1287978
Google Scholar
[8]
Frattolillo, A., Giovinco, G., Mascolo, M.C., Vitale, A., 2005. Effects of hydrophobic treatment on thermophysical properties of lightweight mortars. Exp. Therm. Fluid Sci. 29, 733–741. doi.org/10.1016/J.EXPTHERMFLUSCI.2004.12.002.
DOI: 10.1016/j.expthermflusci.2004.12.002
Google Scholar
[9]
Gour, K.A., Ramadoss, R., Selvaraj, T., 2018. Revamping the traditional air lime mortar using the natural polymer – Areca nut for restoration application. Constr. Build. Mater. 164, 255–264. doi.org/10.1016/j.conbuildmat.2017.12.056.
DOI: 10.1016/j.conbuildmat.2017.12.056
Google Scholar
[10]
Izaguirre, A., Lanas, J., Álvarez, J.I., 2009. Effect of water-repellent admixtures on the behaviour of aerial lime-based mortars. Cem. Concr. Res. 39, 1095–1104. doi.org/10.1016/J.CEMCONRES.2009.07.026.
DOI: 10.1016/j.cemconres.2009.07.026
Google Scholar
[11]
Martínez-García, C., González-Fonteboa, B., Carro-López, D., Martínez-Abella, F., 2020a. Carbonation evolution of lime putty coatings with mussel shell aggregate. Constr. Build. Mater. 264, 120165. doi.org/10.1016/j.conbuildmat.2020.120165.
DOI: 10.1016/j.conbuildmat.2020.120165
Google Scholar
[12]
Martínez-García, C., González-Fonteboa, B., Carro-López, D., Martínez-Abella, F., 2020b. Effects of mussel shell aggregates on hygric behaviour of air lime mortar at different ages. Constr. Build. Mater. 252, 119113. doi.org/https://doi.org/10.1016/j.conbuildmat.2020.119113.
DOI: 10.1016/j.conbuildmat.2020.119113
Google Scholar
[13]
Martínez-García, C., González-Fonteboa, B., Carro-López, D., Martínez-Abella, F., 2019a. Impact of mussel shell aggregates on air lime mortars. Pore structure and carbonation. J. Clean. Prod. 215, 650–668. https://doi.org/https://doi.org/10.1016/j.jclepro.2019.01.121.
DOI: 10.1016/j.jclepro.2019.01.121
Google Scholar
[14]
Martínez-García, C., González-Fonteboa, B., Carro-López, D., Martínez-Abella, F., 2019b. Design and properties of cement coating with mussel shell fine aggregate. Constr. Build. Mater. 215, 494–507. doi.org/https://doi.org/10.1016/j.conbuildmat.2019.04.211.
DOI: 10.1016/j.conbuildmat.2019.04.211
Google Scholar
[15]
Martínez-García, C., González-Fonteboa, B., Martínez-Abella, F., Carro- López, D., 2017. Performance of mussel shell as aggregate in plain concrete. Constr. Build. Mater. 139, 570–583. doi.org/10.1016/j.conbuildmat.2016.09.091.
DOI: 10.1016/j.conbuildmat.2016.09.091
Google Scholar
[16]
Mazhoud, B., Collet, F., Pretot, S., Chamoin, J., 2016. Hygric and thermal properties of hemp-lime plasters. Build. Environ. 96, 206–216. doi.org/10.1016/j.buildenv.2015.11.013.
DOI: 10.1016/j.buildenv.2015.11.013
Google Scholar
[17]
Nunes, C., Slížková, Z., 2014. Hydrophobic lime based mortars with linseed oil: Characterization and durability assessment. Cem. Concr. Res. 61–62, 28–39. doi.org/10.1016/j.cemconres.2014.03.011.
DOI: 10.1016/j.cemconres.2014.03.011
Google Scholar
[18]
Oliveira, A., Pereira, A.S., Lemos, P.C., Guerra, J.P., Silva, V., Faria, P., 2020. Effect of innovative bioproducts on air lime mortars. J. Build. Eng. 101985. doi.org/10.1016/j.jobe.2020.101985.
DOI: 10.1016/j.jobe.2020.101985
Google Scholar
[19]
Osanyintola, O.F., Simonson, C.J., 2006. Moisture buffering capacity of hygroscopic building materials: Experimental facilities and energy impact. Energy Build. 38, 1270–1282. doi.org/10.1016/j.enbuild.2006.03.026.
DOI: 10.1016/j.enbuild.2006.03.026
Google Scholar
[20]
Pahlavan, P., Manzi, S., Sansonetti, A., Bignozzi, M.C., 2018. Valorization of organic additions in restorative lime mortars: Spent cooking oil and albumen. Constr. Build. Mater. 181, 650–658. doi.org/10.1016/j.conbuildmat.2018.06.089.
DOI: 10.1016/j.conbuildmat.2018.06.089
Google Scholar
[21]
Pavlík, Z., Fořt, J., Pavlíková, M., Pokorný, J., Trník, A., Černý, R., 2016. Modified lime-cement plasters with enhanced thermal and hygric storage capacity for moderation of interior climate. Energy Build. 126, 113–127. doi.org/10.1016/J.ENBUILD.2016.05.004.
DOI: 10.1016/j.enbuild.2016.05.004
Google Scholar
[22]
Rahim, M., Douzane, O., Tran Le, A.D., Promis, G., Laidoudi, B., Crigny, A., Dupre, B., Langlet, T., 2015. Characterization of flax lime and hemp lime concretes: Hygric properties and moisture buffer capacity. Energy Build. 88, 91–99. doi.org/https://doi.org/10.1016/j.enbuild.2014.11.043.
DOI: 10.1016/j.enbuild.2014.11.043
Google Scholar
[23]
Santos, T., Gomes, M.I., Silva, A.S., Ferraz, E., Faria, P., 2020. Comparison of mineralogical, mechanical and hygroscopic characteristic of earthen, gypsum and cement-based plasters. Constr. Build. Mater. 254, 119222. doi.org/10.1016/j.conbuildmat.2020.119222.
DOI: 10.1016/j.conbuildmat.2020.119222
Google Scholar
[24]
Stefanidou Maria and Assael, M., Konstantinos, A., Gregory, M., 2010. Thermal Conductivity of Building Materials Employed in the Preservation of Traditional Structures. Int. J. Thermophys. 31, 844–851. doi.org/10.1007/s10765-010-0750-8.
DOI: 10.1007/s10765-010-0750-8
Google Scholar
[25]
Vejmelková, E., Koňáková, D., Čáchová, M., Keppert, M., Černý, R., 2012. Effect of hydrophobization on the properties of lime–metakaolin plasters. Constr. Build. Mater. 37, 556–561. doi.org/10.1016/j.conbuildmat.2012.07.097.
DOI: 10.1016/j.conbuildmat.2012.07.097
Google Scholar
[26]
Widodo, S., Ma'arif, F., Gan, B.S., 2017. Thermal Conductivity and Compressive Strength of Lightweight Mortar Utilizing Pumice Breccia as Fine Aggregate. Procedia Eng. 171, 768–773. doi.org/https://doi.org/10.1016/j.proeng.2017.01.446.
DOI: 10.1016/j.proeng.2017.01.446
Google Scholar