Hygrothermal Behaviour of Air Lime Coatings with Mussel Shell Sand

Article Preview

Abstract:

Air lime coating mortars with mussel shells exhibit useful hygrothermal properties related to humidity and temperature regulation. Introducing mussel shell sand produces a significant increase in pore volume, changing mortar’s microstructure and reducing density. This is attributed to the flaky and irregular shape of the shell particles that present also traces of organic matter. In this work, the natural aggregate is replaced by mussel shell sand in increasing percentages of 25%, 50% and 75%. Additionally, a mortar with 0% of sand replacement is used as baseline of reference. These mortars are tested focusing in two main parameters, in first term, thermal conductivity. And also absorption and desorption cycles, at 80 and 50% relative humidity. The results are very positive for mussel shells specimens, it can be concluded that the use of mussel shell aggregates can improve the hygrothermal properties of air lime coating mortars. Another interesting result is a subjective property such as the aesthetic quality of the finishing, the results is pleasing and, combined with the promising hygrothermal properties opens a good opportunity for mussel shell mortars.

You might also be interested in these eBooks

Info:

Pages:

627-634

Citation:

Online since:

January 2022

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2022 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Barbero-Barrera, M.D.M., Pombo, O., Navacerrada, M.D.L.Á., 2016. Textile fibre waste bindered with natural hydraulic lime. Compos. Part B Eng. 94, 26–33. doi.org/10.1016/j.compositesb.2016.03.013.

DOI: 10.1016/j.compositesb.2016.03.013

Google Scholar

[2] Barbero-Barrera, M.M., Flores Medina, N., Guardia-Martín, C., 2017. Influence of the addition of waste graphite powder on the physical and microstructural performance of hydraulic lime pastes. Constr. Build. Mater. 149, 599–611. doi.org/10.1016/j.conbuildmat.2017.05.156.

DOI: 10.1016/j.conbuildmat.2017.05.156

Google Scholar

[3] Barbero-Barrera, M.M., García-Santos, A., Neila-González, F.J., 2014. Thermal conductivity of lime mortars and calcined diatoms. Parameters influencing their performance and comparison with the traditional lime and mortars containing crushed marble used as renders. Energy Build. 76, 422–428. doi.org/10.1016/J.ENBUILD.2014.02.065.

DOI: 10.1016/j.enbuild.2014.02.065

Google Scholar

[4] Belakroum, R., Gherfi, A., Kadja, M., Maalouf, C., Lachi, M., El Wakil, N., Mai, T.H., 2018. Design and properties of a new sustainable construction material based on date palm fibers and lime. Constr. Build. Mater. 184, 330–343. doi.org/10.1016/j.conbuildmat.2018.06.196.

DOI: 10.1016/j.conbuildmat.2018.06.196

Google Scholar

[5] Bruno, A.W., Gallipoli, D., Perlot, C., Mendes, J., 2017. Effect of stabilisation on mechanical properties, moisture buffering and water durability of hypercompacted earth. Constr. Build. Mater. 149, 733–740. doi.org/10.1016/j.conbuildmat.2017.05.182.

DOI: 10.1016/j.conbuildmat.2017.05.182

Google Scholar

[6] Carrajola, R., Hawreen, A., Flores-Colen, I., de Brito, J., 2020. Fresh properties of cement-based thermal renders with fly ash, air lime and lightweight aggregates. J. Build. Eng. 101868. doi.org/10.1016/j.jobe.2020.101868.

DOI: 10.1016/j.jobe.2020.101868

Google Scholar

[7] Centauro, I., Cantisani, E., Grandin, C., Salvini, A., Vettori, S., 2017. The influence of natural organic materials on the properties of traditional lime-based mortars. Int. J. Archit. Herit. 11, 670–684. doi.org/10.1080/15583058.2017.1287978.

DOI: 10.1080/15583058.2017.1287978

Google Scholar

[8] Frattolillo, A., Giovinco, G., Mascolo, M.C., Vitale, A., 2005. Effects of hydrophobic treatment on thermophysical properties of lightweight mortars. Exp. Therm. Fluid Sci. 29, 733–741. doi.org/10.1016/J.EXPTHERMFLUSCI.2004.12.002.

DOI: 10.1016/j.expthermflusci.2004.12.002

Google Scholar

[9] Gour, K.A., Ramadoss, R., Selvaraj, T., 2018. Revamping the traditional air lime mortar using the natural polymer – Areca nut for restoration application. Constr. Build. Mater. 164, 255–264. doi.org/10.1016/j.conbuildmat.2017.12.056.

DOI: 10.1016/j.conbuildmat.2017.12.056

Google Scholar

[10] Izaguirre, A., Lanas, J., Álvarez, J.I., 2009. Effect of water-repellent admixtures on the behaviour of aerial lime-based mortars. Cem. Concr. Res. 39, 1095–1104. doi.org/10.1016/J.CEMCONRES.2009.07.026.

DOI: 10.1016/j.cemconres.2009.07.026

Google Scholar

[11] Martínez-García, C., González-Fonteboa, B., Carro-López, D., Martínez-Abella, F., 2020a. Carbonation evolution of lime putty coatings with mussel shell aggregate. Constr. Build. Mater. 264, 120165. doi.org/10.1016/j.conbuildmat.2020.120165.

DOI: 10.1016/j.conbuildmat.2020.120165

Google Scholar

[12] Martínez-García, C., González-Fonteboa, B., Carro-López, D., Martínez-Abella, F., 2020b. Effects of mussel shell aggregates on hygric behaviour of air lime mortar at different ages. Constr. Build. Mater. 252, 119113. doi.org/https://doi.org/10.1016/j.conbuildmat.2020.119113.

DOI: 10.1016/j.conbuildmat.2020.119113

Google Scholar

[13] Martínez-García, C., González-Fonteboa, B., Carro-López, D., Martínez-Abella, F., 2019a. Impact of mussel shell aggregates on air lime mortars. Pore structure and carbonation. J. Clean. Prod. 215, 650–668. https://doi.org/https://doi.org/10.1016/j.jclepro.2019.01.121.

DOI: 10.1016/j.jclepro.2019.01.121

Google Scholar

[14] Martínez-García, C., González-Fonteboa, B., Carro-López, D., Martínez-Abella, F., 2019b. Design and properties of cement coating with mussel shell fine aggregate. Constr. Build. Mater. 215, 494–507. doi.org/https://doi.org/10.1016/j.conbuildmat.2019.04.211.

DOI: 10.1016/j.conbuildmat.2019.04.211

Google Scholar

[15] Martínez-García, C., González-Fonteboa, B., Martínez-Abella, F., Carro- López, D., 2017. Performance of mussel shell as aggregate in plain concrete. Constr. Build. Mater. 139, 570–583. doi.org/10.1016/j.conbuildmat.2016.09.091.

DOI: 10.1016/j.conbuildmat.2016.09.091

Google Scholar

[16] Mazhoud, B., Collet, F., Pretot, S., Chamoin, J., 2016. Hygric and thermal properties of hemp-lime plasters. Build. Environ. 96, 206–216. doi.org/10.1016/j.buildenv.2015.11.013.

DOI: 10.1016/j.buildenv.2015.11.013

Google Scholar

[17] Nunes, C., Slížková, Z., 2014. Hydrophobic lime based mortars with linseed oil: Characterization and durability assessment. Cem. Concr. Res. 61–62, 28–39. doi.org/10.1016/j.cemconres.2014.03.011.

DOI: 10.1016/j.cemconres.2014.03.011

Google Scholar

[18] Oliveira, A., Pereira, A.S., Lemos, P.C., Guerra, J.P., Silva, V., Faria, P., 2020. Effect of innovative bioproducts on air lime mortars. J. Build. Eng. 101985. doi.org/10.1016/j.jobe.2020.101985.

DOI: 10.1016/j.jobe.2020.101985

Google Scholar

[19] Osanyintola, O.F., Simonson, C.J., 2006. Moisture buffering capacity of hygroscopic building materials: Experimental facilities and energy impact. Energy Build. 38, 1270–1282. doi.org/10.1016/j.enbuild.2006.03.026.

DOI: 10.1016/j.enbuild.2006.03.026

Google Scholar

[20] Pahlavan, P., Manzi, S., Sansonetti, A., Bignozzi, M.C., 2018. Valorization of organic additions in restorative lime mortars: Spent cooking oil and albumen. Constr. Build. Mater. 181, 650–658. doi.org/10.1016/j.conbuildmat.2018.06.089.

DOI: 10.1016/j.conbuildmat.2018.06.089

Google Scholar

[21] Pavlík, Z., Fořt, J., Pavlíková, M., Pokorný, J., Trník, A., Černý, R., 2016. Modified lime-cement plasters with enhanced thermal and hygric storage capacity for moderation of interior climate. Energy Build. 126, 113–127. doi.org/10.1016/J.ENBUILD.2016.05.004.

DOI: 10.1016/j.enbuild.2016.05.004

Google Scholar

[22] Rahim, M., Douzane, O., Tran Le, A.D., Promis, G., Laidoudi, B., Crigny, A., Dupre, B., Langlet, T., 2015. Characterization of flax lime and hemp lime concretes: Hygric properties and moisture buffer capacity. Energy Build. 88, 91–99. doi.org/https://doi.org/10.1016/j.enbuild.2014.11.043.

DOI: 10.1016/j.enbuild.2014.11.043

Google Scholar

[23] Santos, T., Gomes, M.I., Silva, A.S., Ferraz, E., Faria, P., 2020. Comparison of mineralogical, mechanical and hygroscopic characteristic of earthen, gypsum and cement-based plasters. Constr. Build. Mater. 254, 119222. doi.org/10.1016/j.conbuildmat.2020.119222.

DOI: 10.1016/j.conbuildmat.2020.119222

Google Scholar

[24] Stefanidou Maria and Assael, M., Konstantinos, A., Gregory, M., 2010. Thermal Conductivity of Building Materials Employed in the Preservation of Traditional Structures. Int. J. Thermophys. 31, 844–851. doi.org/10.1007/s10765-010-0750-8.

DOI: 10.1007/s10765-010-0750-8

Google Scholar

[25] Vejmelková, E., Koňáková, D., Čáchová, M., Keppert, M., Černý, R., 2012. Effect of hydrophobization on the properties of lime–metakaolin plasters. Constr. Build. Mater. 37, 556–561. doi.org/10.1016/j.conbuildmat.2012.07.097.

DOI: 10.1016/j.conbuildmat.2012.07.097

Google Scholar

[26] Widodo, S., Ma'arif, F., Gan, B.S., 2017. Thermal Conductivity and Compressive Strength of Lightweight Mortar Utilizing Pumice Breccia as Fine Aggregate. Procedia Eng. 171, 768–773. doi.org/https://doi.org/10.1016/j.proeng.2017.01.446.

DOI: 10.1016/j.proeng.2017.01.446

Google Scholar