[1]
CSN EN 14995, 2006. Plastics - Evaluation of compostability - Test scheme and specifications, Category: 6407 Testing of plastics and plastic products [WWW Document]. https://www.en-standard.eu. URL https://www.en-standard.eu/csn-en-14995-plastics-evaluation-of-compostability-test-scheme-and-specifications/ (accessed 1.19.21).
DOI: 10.3403/30116502
Google Scholar
[2]
Egenti, C., Khatib, J., 2016. Sustainability of compressed earth as a construction material. p.309–341. https://doi.org/10.1016/B978-0-08-100370-1.00013-5.
DOI: 10.1016/b978-0-08-100370-1.00013-5
Google Scholar
[3]
Elsacker, E., Vandelook, S., Brancart, J., Peeters, E., Laet, L.D., 2019. Mechanical, physical and chemical characterisation of mycelium-based composites with different types of lignocellulosic substrates. PLOS ONE 14. https://doi.org/10.1371/journal.pone.0213954.
DOI: 10.1371/journal.pone.0213954
Google Scholar
[4]
Elsacker, E., Vandelook, S., Van Wylick, A., Ruytinx, J., De Laet, L., Peeters, E., 2020. A comprehensive framework for the production of mycelium-based lignocellulosic composites. Sci Total Environ 725, 138431. https://doi.org/10.1016/j.scitotenv.2020.138431.
DOI: 10.1016/j.scitotenv.2020.138431
Google Scholar
[5]
Florea, I., Manea, D.L., 2019. Analysis of Thermal Insulation Building Materials Based on Natural Fibers. Procedia Manufacturing 32, 230–235. https://doi.org/10.1016/j.promfg.2019.02.207.
DOI: 10.1016/j.promfg.2019.02.207
Google Scholar
[6]
Girometta, C., Picco, A., Baiguera, R., Dondi, D., Babbini, S., Cartabia, M., Pellegrini, M., Savino, E., 2019. Physico-Mechanical and Thermodynamic Properties of Mycelium-Based Biocomposites: A Review. Sustainability 11. https://doi.org/10.3390/su11010281.
DOI: 10.3390/su11010281
Google Scholar
[7]
Gore, 2006. An Inconvenient Truth. The Planetary Emergency of Global Warming and What We Can Do About It.
DOI: 10.22621/cfn.v120i4.378
Google Scholar
[8]
Haneef, M., Ceseracciu, L., Canale, C., Bayer, I.S., Heredia-Guerrero, J.A., Athanassiou, A., 2017. Advanced Materials From Fungal Mycelium: Fabrication and Tuning of Physical Properties. Scientific Reports 7, 1–11. https://doi.org/10.1038/srep41292.
DOI: 10.1038/srep41292
Google Scholar
[9]
Holt, G., Mcintyre, G., Flagg, D., Bayer, E., Wanjura, J., Pelletier, M., 2012. Fungal Mycelium and Cotton Plant Materials in the Manufacture of Biodegradable Molded Packaging Material: Evaluation Study of Select Blends of Cotton Byproducts. Journal of Biobased Materials and Bioenergy J. Biobased Mater. Bioenergy, 431–439. https://doi.org/10.1166/jbmb.2012.1241.
DOI: 10.1166/jbmb.2012.1241
Google Scholar
[10]
ISO 17556, 2019. Plastics - Determination of the ultimate aerobic biodegradability of plastic materials in soil by measuring the oxygen demand in a respirometer or the amount of carbon dioxide evolved [WWW Document]. ISO. URL https://www.iso.org/cms/render/live/en/sites/isoorg/contents/data/standard/07/49/74993.html (accessed 1.19.21).
DOI: 10.3403/30370139
Google Scholar
[11]
ISO 20200, 2015. Plastics - Determination of the degree of disintegration of plastic materials under simulated composting conditions in a laboratory-scale test [WWW Document]. ISO. URL https://www.iso.org/cms/render/live/en/sites/isoorg/contents/data/standard/06/33/63367.html (accessed 1.19.21).
DOI: 10.3403/30277546
Google Scholar
[12]
Johns, C., 2017. Living Soils: The Role of Microorganisms in Soil Health 7.
Google Scholar
[13]
Jones, M., Bhat, T., Kandare, E., Thomas, A., Joseph, P., Dekiwadia, C., Yuen, R., John, S., Ma, J., Wang, C.-H., 2018. Thermal Degradation and Fire Properties of Fungal Mycelium and Mycelium - Biomass Composite Materials. Scientific Reports 8, 17583. https://doi.org/10.1038/s41598-018-36032-9.
DOI: 10.1038/s41598-018-36032-9
Google Scholar
[14]
Jones, M., Mautner, A., Luenco, S., Bismarck, A., John, S., 2020. Engineered mycelium composite construction materials from fungal biorefineries: A critical review. Materials & Design 187, 108397. https://doi.org/10.1016/j.matdes.2019.108397.
DOI: 10.1016/j.matdes.2019.108397
Google Scholar
[15]
Kumar, R., Yakubu, M., Anandjiwala, R., 2010. Biodegradation of flax fiber reinforced poly lactic acid. Express Polymer Letters 4. https://doi.org/10.3144/expresspolymlett.2010.53.
DOI: 10.3144/expresspolymlett.2010.53
Google Scholar
[16]
Lelivelt, R., Lindner, G., Teuffel, P., Lamers, H., 2015. The production process and compressive strength of mycelium-based materials 7.
Google Scholar
[17]
Li, L., Frey, M., Browning, K., 2010. Biodegradability Study on Cotton and Polyester Fabrics. Journal of Engineered Fibers and Fabrics 5. https://doi.org/10.1177/155892501000500406.
DOI: 10.1177/155892501000500406
Google Scholar
[18]
Mattos, B.D., de Cademartori, P.H.G., Lourençon, T.V., Gatto, D.A., Magalhães, W.L.E., 2014. Biodeterioration of wood from two fast-growing eucalypts exposed to field test. International Biodeterioration & Biodegradation 93, 210–215. https://doi.org/10.1016/j.ibiod.2014.04.027.
DOI: 10.1016/j.ibiod.2014.04.027
Google Scholar
[19]
Mazibuko, M., Ndumo, J., Low, M., Ming, D., Harding, K., 2019. Investigating the natural degradation of textiles under controllable and uncontrollable environmental conditions. Procedia Manufacturing, The 2nd International Conference on Sustainable Materials Processing and Manufacturing, SMPM 2019, 8-10 March 2019, Sun City, South Africa 35, 719–724. https://doi.org/10.1016/j.promfg.2019.06.014.
DOI: 10.1016/j.promfg.2019.06.014
Google Scholar
[20]
Oliveira, C., Cunha, F., Andrade, C., 2010. Evaluation of Biodegradability of Different Blends of Polystyrene and Starch Buried in Soil. Macromolecular Symposia 290, 115–120. https://doi.org/10.1002/masy.201050413.
DOI: 10.1002/masy.201050413
Google Scholar
[21]
Sanhawong, W., Banhalee, P., Boonsang, S., Kaewpirom, S., 2017. Effect of concentrated natural rubber latex on the properties and degradation behavior of cotton-fiber-reinforced cassava starch biofoam. Industrial Crops and Products 108, 756–766. https://doi.org/10.1016/j.indcrop.2017.07.046.
DOI: 10.1016/j.indcrop.2017.07.046
Google Scholar
[22]
Xing, Y., Brewer, M., El-Gharabawy, H., Griffith, G.W., Jones, P., 2018. Growing and testing mycelium bricks as building insulation materials. IOP Conference Series: Earth and Environmental Science 121, 022032. https://doi.org/10.1088/1755-1315/121/2/022032.
DOI: 10.1088/1755-1315/121/2/022032
Google Scholar
[23]
Yang, Z. (Joey), Zhang, F., Still, B., White, M., Amstislavski, P., 2017. Physical and Mechanical Properties of Fungal Mycelium-Based Biofoam. Journal of Materials in Civil Engineering 29, 04017030. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001866.
DOI: 10.1061/(asce)mt.1943-5533.0001866
Google Scholar