Stabilization of Dicalcium Silicate-Zn Composite Approaching Layered Double Hydroxide Structure for Bioactive Cement Applications

Article Preview

Abstract:

Layered Double Hydroxide (LDH) is ionic clay that is characterized by the union of metal cations and OH- hydroxides. LDH composites exhibit considerably high releasing and recharging capacity and have applications as bioactive cements. They can be prepared by direct co-precipitation of metal salts at controlled pH. The preparation is carried out from an acid solution of Zn (NO3)2.6H2O, Al (NO3)3.9H2O and a basic solution of Na2CO3 and NaOH, with a Zn/Al ratio = 3, the pH is stabilized between 9 and 9.5 at a constant temperature of 45°C. The objective of this study is to incorporate Zinc and Aluminum elements at different percentages in dicalcium silicate phase to produce C2S phase incorporating LDH composite. The characterizations of the developed phases by XRD and SEM indicate the formation of stoichiometric LDH phases Zn6Al2(OH)16CO3.4H2O and non-stoichiometric Zn0.61Al0.39 (OH)2(CO3)0.195.xH2O, the incorporation of Zn in the belitic C2S phase and not Al. The obtained micrographs by SEM(EDAX) analysis show new morphology of the stabilized composite.

You might also be interested in these eBooks

Info:

Pages:

668-675

Citation:

Online since:

January 2022

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2022 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Andrade F.R.D., Maringolo V., Kihara Y., Incorporation of V, Zn and Pb into the crystalline phases of Portland clinker, Cem. Concr.Res. 33(2003) 63– 71. https://doi.org/10.1016/S0008-8846(02)00928-6.

DOI: 10.1016/s0008-8846(02)00928-6

Google Scholar

[2] Brown G., & Gastuch M.C., Mixed Magesium- Aluminium hydroxyl structure and structural chemistry of synthetic hydroxyl carbonates and related minerals and compounds, Clays Minerals.7 (1967) 193.

DOI: 10.1180/claymin.1967.007.2.06

Google Scholar

[3] Crepaldi E. L., Valim J. B., Layered double hydroxides synthesis, strusture, properties and application, Quimica.Nova. 21(1998) 300-311. https://doi.org/10.1590/S0100-40421998000300011.

Google Scholar

[4] Diamond S., Lopez-Flores F., Mater. Res. Soc., in: Annual Meeting Symposium, Boston, 1981, p.112.

Google Scholar

[5] Feitknecht.Helv. W. , Chim.Acta.25 (1942) 555.

Google Scholar

[6] Forano C., Bruna F., Mousty C., and Prevot V. Interactions Between Biological Cells and Layered Double Hydroxides: Towards Functional Materials, Chem. Rec. 2018, 18, 1–18,.

DOI: 10.1002/tcr.201700102

Google Scholar

[7] Knapen E., Gemert D.V., Cement hydration and microstructure formation in the presence of water-soluble polymers, Cem. Concr. Res. 39 (1) (2009) 6–13. https://doi.org/10.1016/j.cemconres.2008.10.003.

DOI: 10.1016/j.cemconres.2008.10.003

Google Scholar

[8] Krakowiak K.J., Thomas J.J., Musso S., James S., Akono A.T., Ulm F.J., Nano-chemo- mechanical signature of conventional oil-well cement systems: Effects of elevated temperature and curing time, Cem. Concr. Res. 67 (67) (2015) 103–121. https://doi.org/10.1016/j.cemconres.2014.08.008.

DOI: 10.1016/j.cemconres.2014.08.008

Google Scholar

[9] Midgley C.M., The crystal structure of β dicalcium silicate. Acta Crystallography, 5, 1952, 307–312.

Google Scholar

[10] Miyata S., Okada A., Synthesis of hydrotalcite like compounds and their physicochemicals properties the systems Mg+2 –Al3+ - SO2 -4 and Mg+2 –Al3+ - CrO-2 4..clays . Clay Miner 25 P14-18(1977).

DOI: 10.1346/ccmn.1977.0250103

Google Scholar

[11] Nagendra, B., Rosely, C.S., Leuteritz, A., Reuter, U., Gowd, E.B., 2017. Polypropylene/layered double hydroxide nanocomposites: Influence of LDH intralayer metal constituents on the properties of polypropylene. ACS Omega 2 (1), 20_31.

DOI: 10.1021/acsomega.6b00485

Google Scholar

[12] Newman S., Jones W., Synthesis, caracterization and application of layered double hydroxides containing organic guests, New Journal of Chemistry. 22 (2001) 105-115. https://doi.org/10.1039/A708319J.

DOI: 10.1039/a708319j

Google Scholar

[13] Pegado L., Labbez C., and Churakov S.V., Mechanism of aluminium incorporation into C–S–H from ab initio calculations. Journal of Materials Chemistry A, 2014. 2(10): pp.3477-3483. https://doi.org/10.1039/C3TA14597B.

DOI: 10.1039/c3ta14597b

Google Scholar

[14] Rives V. and Ulibarri M. A., Coord. Chem. Rev., 181 (1999) 61.

Google Scholar

[15] Scrivener K.L., Füllmann T., Gallucci E., Walenta G., Bermejo E., Quantitative study of Portland cement hydration by X-ray diffraction/Rietveld analysis and independent methods, Cem. Concr. Res. 34 (9) (2004) 1541–1547. https://doi.org/10.1016/j.cemconres.2004.04.014.

DOI: 10.1016/j.cemconres.2004.04.014

Google Scholar

[16] Seebach D., Seuring B., Kalinowski H.-O., Lubosch W., Renger B., Synthesis and Determination of the Absolute Configuration of Pyrenophorin and Vermiculin, Angew. Chemie Int. Ed. English. 16 (1977) 264–265. https://doi.org/10.1002/anie.197702641.

DOI: 10.1002/anie.197702641

Google Scholar

[17] Smith DK, Majumdar AJ and Ordway F (1961) Re-Examination of the Polymorphism of Dicalcium Silicate, J Am Ceram Soc 44(8):405-411.

DOI: 10.1111/j.1151-2916.1961.tb15472.x

Google Scholar

[18] Stumma A., Garbeva K., Beuchlea G., Blacka L., Stemmermanna P., Nqescha R., Incorporation of zinc into calcium silicate hydrates, Part I: formation of C-S-H(I) with C/S=2/3 and its isochemical counterpart gyrolite. Cement and Concrete Research 35 (2005) 1665–1675. https://doi.org/10.1016/j.cemconres.2004.11.007.

DOI: 10.1016/j.cemconres.2004.11.007

Google Scholar

[19] Susuki K., Yamaguchi G., A Structural Study on α'-Ca2SiO4, Supplement Paper, Tokyo. Proceedings of the 5th International Symposium on the Chemistry of Cement, 1968, 67–72.

Google Scholar

[20] Taylor F.W.H., Cement Chemistry, second ed., Thomas Telford, (1997).

Google Scholar

[21] Vaysse C., Thèse de doctorat, « Caractérisation structurale d'hydroxydes doubles lamellaires contenant des anions oxo métallates (Mo, W) ou acrylate intercalés ». Université Bordeaux I, (2001).

Google Scholar

[22] Wei Sua L., Jae Lin D., Yen Uan J., Novel dental resin composites containing LiAl-F layered double hydroxide (LDH) filler: Fluoride release/recharge, mechanical properties, color change, and cytotoxicity, Dental Materials, Volume 35, Issue 5, May 2019, Pages 663-672, https://doi.org/10.1016/j.dental.2019.02.002.

DOI: 10.1016/j.dental.2019.02.002

Google Scholar

[23] Wua Y., Duana P. , Yan. C., Role of layered double hydroxides in setting, hydration degree, microstructure and compressive strength of cement paste. Appl Clay Sci 2018;P130, https://doi.org/10.1016/j.clay.2018.03.024.

DOI: 10.1016/j.clay.2018.03.024

Google Scholar

[24] Xu ZP, Zhang J, Adebajo MO, Zhang H, Zhou CH. Catalytic application of layered double hydroxides and derivatives. Appl Clay Sci 2011;53(2):139–50. https://doi.org/10.1016/j.clay.2011.02.007.

DOI: 10.1016/j.clay.2011.02.007

Google Scholar

[25] You Y., Zhao H., Vance G.F., Adsorption of dicamba (3, 6-dichloro-2-methoxy benzoic acid) in aqueous solution by calcined–layered double hydroxide. Applied ClayScience 21 (2002) 217– 226. https://doi.org/10.1016/S0169-1317(01)00102-8.

DOI: 10.1016/s0169-1317(01)00102-8

Google Scholar