[1]
Ali, M.E., Alabdulkarem, A., 2017. On thermal characteristics and microstructure of a new insulation material extracted from date palm trees surface fibers. Construction and Building Materials 138, 276–284.
DOI: 10.1016/j.conbuildmat.2017.02.012
Google Scholar
[2]
ASTM C 1609/C1609M, Standard Test Method for Flexural Performance of Fiber-Reinforced Concrete (Using Beam With Third-Point Loading), (2006).
DOI: 10.1520/c1609_c1609m-05
Google Scholar
[3]
Belayachi, N., Hoxha, D., Slaimia, M., 2016. Impact of accelerated climatic aging on the behaviour of gypsum plaster-straw material for building thermal insulation. Construction and Building Materials 125, 912–918.
DOI: 10.1016/j.conbuildmat.2016.08.120
Google Scholar
[4]
Buratti, C., Moretti, E., Belloni, E., Agosti, F., 2015. Thermal and acoustic performance evaluation of new basalt fiber insulation panels for buildings. Energy Procedia 78, 303–308. https://doi.org/10.1016/j.egypro.2015.11.648.
DOI: 10.1016/j.egypro.2015.11.648
Google Scholar
[5]
Buratti, C., Merli, F., Moretti, E., 2017. Aerogel-based materials for building applications: Influence of granule size on thermal and acoustic performance. Energy and Buildings 152, 472–482. https://doi.org/10.1016/j.enbuild.2017.07.071.
DOI: 10.1016/j.enbuild.2017.07.071
Google Scholar
[6]
Buratti, C., Belloni, E., Lunghi, L., & Barbanera, M., 2016. Thermal Conductivity Measurements By Means of a New Small Hot-Box, Apparatus: Manufacturing, Calibration and Preliminary Experimental Tests on Different Materials. International Journal of Thermophysics, 37(5). https://doi.org/10.1007/s10765-016-2052-2.
DOI: 10.1007/s10765-016-2052-2
Google Scholar
[7]
Bouzit, S., Laasri, S., Taha, M., Laghzizil, A., Hajjaji, A., Merli, F., Buratti, C., 2019. Characterization of Natural Gypsum Materials and Their Composites for Building Applications. Applied Sciences Journal 9, 2443;.
DOI: 10.3390/app9122443
Google Scholar
[8]
Cornaro, C., Buratti, C., 2020. Energy Efficiency in Buildings and Innovative Materials for Building Construction. Applied Sciences Journal 10, 2866;.
DOI: 10.3390/app10082866
Google Scholar
[9]
Gao, Y., Gao, X., & Zhang, X., 2017. The 2 °C Global Temperature Target and the Evolution of the Long-Term Goal of Addressing Climate Change—From the United Nations Framework Convention on Climate Change to the Paris Agreement. Engineering, 3(2), 272–278. https://doi.org/10.1016/J.ENG.2017.01.022.
DOI: 10.1016/j.eng.2017.01.022
Google Scholar
[10]
Gourlay, E., Glé, P., Marceau, S., Foy, C., Moscardelli, S., 2017. Effect of water content on the acoustical and thermal properties of hemp concretes. Construction and Building Materials 139, 512–523.
DOI: 10.1016/j.conbuildmat.2016.11.018
Google Scholar
[11]
Iucolano, F., Caputo, D., Leboffe, F., Liguori, B., 2015. Mechanical behavior of plaster reinforced with abaca fibers. Construction and Building Materials 99, 184–191. https://doi.org/10.1016/j.conbuildmat.2015.09.020.
DOI: 10.1016/j.conbuildmat.2015.09.020
Google Scholar
[12]
ISO 10534-2:1998. Acoustics – determination of sound absorption coefficient and impedance in impedance tubes – Part 2: Transfer-function method, (1998).
DOI: 10.3403/02552411u
Google Scholar
[13]
JCGM 100, GUM 1995 with minor corrections evaluation of measurement data—guide to the expression of uncertainty in measurement, (2008).
Google Scholar
[14]
Jiang, Y., Phelipot-Mardele, A., Collet, F., Lanos, C., Lemke, M., Ansell, M., Hussain, A., Lawrence, M., 2020. Moisture buffer, fire resistance and insulation potential of novel bio-clay plaster. Construction and Building Materials 244, 118353.
DOI: 10.1016/j.conbuildmat.2020.118353
Google Scholar
[15]
Lima Jr., H.C., Willrich, F.L., Barbosa, N.P., Rosa, M.A., Cunha, B.S., 2008. Durability analysis of bamboo as concrete reinforcement. Materials and Structures 41, 981– 989.
DOI: 10.1617/s11527-007-9299-9
Google Scholar
[16]
Liuzzi, S., Rubino, C., Stefanizzi, P., Petrella, A., Boghetich, A., Casavola, C., Pappalettera, G., 2018. Hygrothermal properties of clayey plasters with olive fibers. Construction and Building Materials 158, 24–32.
DOI: 10.1016/j.conbuildmat.2017.10.013
Google Scholar
[17]
Page, J., Khadraoui, F., Boutouil, M., Gomina, M., 2017. Multi-physical properties of a structural concrete incorporating short flax fibers. Construction and Building Materials 140, 344–353.
DOI: 10.1016/j.conbuildmat.2017.02.124
Google Scholar
[18]
Palumbo, M., McGregor, F., Heath, A., Walker, P., 2016. The influence of two crop by products on the hygrothermal properties of earth plasters. Building and Environment 105, 245–252.
DOI: 10.1016/j.buildenv.2016.06.004
Google Scholar
[19]
Pierobon, F., Zanetti, M., Grigolato, S., Sgarbossa, A., Anfodillo, T., Cavalli, R., 2015. Life cycle environmental impact of firewood production – a case study in Italy. Applied Energy 150, 185–195.
DOI: 10.1016/j.apenergy.2015.04.033
Google Scholar
[20]
Sathiparan, N., Rupasinghe, M.N., Pavithra, B.H.M., 2017. Performance of coconut coir reinforced hydraulic cement mortar for surface plastering application., Construction and Building Materials 142, 23–30.
DOI: 10.1016/j.conbuildmat.2017.03.058
Google Scholar