[1]
Caldas, L.R., Saraiva, A.B., Andreola, V.M., Dias, R., Filho, T., 2020. Bamboo bio-concrete as an alternative for buildings ' climate change mitigation and adaptation. Constr. Build. Mater. 263, 120652. https://doi.org/10.1016/j.conbuildmat.2020.120652.
DOI: 10.1016/j.conbuildmat.2020.120652
Google Scholar
[2]
Caldas, L.R., Saraiva, A.B., Lucena, A.F.P., Da Gloria, M.Y., Santos, A.S., Filho, R.D.T., 2021. Building materials in a circular economy: The case of wood waste as CO2-sink in bio concrete. Resour. Conserv. Recycl. 166. https://doi.org/10.1016/j.resconrec.2020.105346.
DOI: 10.1016/j.resconrec.2020.105346
Google Scholar
[3]
CEN, 2011. EN 15978:2011 - Sustainability of construction works — Assessment of environmental performance of buildings — Calculation method.
Google Scholar
[4]
Chen, C.X., Pierobon, F., Ganguly, I., 2019. Life Cycle Assessment (LCA) of Cross-Laminated Timber (CLT) produced in Western Washington: The role of logistics and wood species mix. Sustain. https://doi.org/10.3390/su11051278.
DOI: 10.3390/su11051278
Google Scholar
[5]
Chen, Z., Gu, H., Bergman, R.D., Liang, S., 2020. Comparative life-cycle assessment of a high-rise mass timber building with an equivalent reinforced concrete alternative using the athena impact estimator for buildings. Sustain. https://doi.org/10.3390/su12114708.
DOI: 10.3390/su12114708
Google Scholar
[6]
Darghouth, N.R., Barbose, G., Zuboy, J., Gagnon, P.J., Mills, A.D., Bird, L., 2021. Demand charge savings from solar PV and energy storage. Energy Policy 146, 111766. https://doi.org/10.1016/j.enpol.2020.111766.
DOI: 10.1016/j.enpol.2020.111766
Google Scholar
[7]
Demertzi, M., Sierra-Pérez, J., Paulo, J.A., Arroja, L., Dias, A.C., 2017. Environmental performance of expanded cork slab and granules through life cycle assessment. J. Clean. Prod. 145, 294–302. https://doi.org/10.1016/j.jclepro.2017.01.071.
DOI: 10.1016/j.jclepro.2017.01.071
Google Scholar
[8]
Escamilla, E.Z., Habert, G., Wohlmuth, E., 2016. When CO 2 counts : Sustainability assessment of industrialized bamboo as an alternative for social housing programs in the Philippines. Build. Environ. 103, 44–53. https://doi.org/10.1016/j.buildenv.2016.04.003.
DOI: 10.1016/j.buildenv.2016.04.003
Google Scholar
[9]
Ferdosian, F., Pan, Z., Gao, G., Zhao, B., 2017. Bio-based adhesives and evaluation for wood composites application. Polymers (Basel). https://doi.org/10.3390/polym9020070.
DOI: 10.3390/polym9020070
Google Scholar
[10]
Franco, L., Pozza, L., Saetta, A., Savoia, M., Talledo, D., 2019. Strategies for structural modelling of CLT panels under cyclic loading conditions. Eng. Struct. https://doi.org/10.1016/j.engstruct.2019.109476.
DOI: 10.1016/j.engstruct.2019.109476
Google Scholar
[11]
Jayalath, A., Navaratnam, S., Ngo, T., Mendis, P., Hewson, N., Aye, L., 2020. Life cycle performance of Cross Laminated Timber mid-rise residential buildings in Australia. Energy Build. 223, 110091. https://doi.org/10.1016/j.enbuild.2020.110091.
DOI: 10.1016/j.enbuild.2020.110091
Google Scholar
[12]
Lewis, E., Lewis, E., 2018. Environmental Product Declaration. Sustainaspeak 106–107. https://doi.org/10.4324/9781315270326-75.
Google Scholar
[13]
Liang, S., Gu, H., Bergman, R., Kelley, S.S., 2020. Comparative life-cycle assessment of a mass timber building and concrete alternative. Wood Fiber Sci. https://doi.org/10.22382/wfs-2020-019.
DOI: 10.22382/wfs-2020-019
Google Scholar
[14]
Nakano, K., Koike, W., Yamagishi, K., Hattori, N., 2020. Environmental impacts of cross-laminated timber production in Japan. Clean Technol. Environ. Policy 22, 2193–2205. https://doi.org/10.1007/s10098-020-01948-2.
DOI: 10.1007/s10098-020-01948-2
Google Scholar
[15]
Pacheco-Torgal, F., 2014. Eco-efficient construction and building materials research under the EU Framework Programme Horizon 2020. Constr. Build. Mater. 51, 151–162. https://doi.org/10.1016/j.conbuildmat.2013.10.058.
DOI: 10.1016/j.conbuildmat.2013.10.058
Google Scholar
[16]
Pacheco-Torgal, F., Faria, J., Jalali, S., 2012. Embodied Energy versus Operational Energy. Showing the Shortcomings of the Energy Performance Building Directive (EPBD). Mater. Sci. Forum. https://doi.org/10.4028/www.scientific.net/MSF.730-732.587.
DOI: 10.4028/www.scientific.net/msf.730-732.587
Google Scholar
[17]
Puettmann, M., Sinha, A., Ganguly, I., 2019. Life cycle energy and environmental impacts of cross laminated timber made with coastal douglas-fir. J. Green Build. 14, 17–33. https://doi.org/10.3992/1943-4618.14.4.17.
DOI: 10.3992/1943-4618.14.4.17
Google Scholar
[18]
Sierra-Pérez, J., Boschmonart-Rives, J., Dias, A.C., Gabarrell, X., 2016. Environmental implications of the use of agglomerated cork as thermal insulation in buildings. J. Clean. Prod. 126, 97–107. https://doi.org/10.1016/J.JCLEPRO.2016.02.146.
DOI: 10.1016/j.jclepro.2016.02.146
Google Scholar
[19]
Stora Enso, 2020. Environmental Product Declaration CLT ( Cross Laminated Timber ). Int. EPD Syst.
Google Scholar
[20]
Thormark, C., 2002. A low energy building in a life cycle — its embodied energy , energy need for operation and recycling potential. Build. Environ. 37, 429–435.
DOI: 10.1016/s0360-1323(01)00033-6
Google Scholar
[21]
UNEP, 2019. Global Status Report for Buildings and Construction. Towards a zero-emissions, effi cient and resilient buildings and constructi on sector.
Google Scholar
[22]
WBCSD, 2016. Global Cement Database on CO₂ and Energy Information.
Google Scholar