[1]
Abhijith, R., Ashok, A., & Rejeesh, C. R. (2018). Sustainable packaging applications from mycelium to substitute polystyrene : a review. Materials Today: Proceedings, 5(1), 2139–2145. https://doi.org/10.1016/j.matpr.2017.09.211.
DOI: 10.1016/j.matpr.2017.09.211
Google Scholar
[2]
Binder, A., Zirkelbach, D., & Künzel, H. (2017). Test Method To Quantify The Wicking Properties Of Porous Insulation Materials Designed To Prevent Interstitial Condensation Test Method To Quantify The Wicking Properties Of Porous Insulation Materials Designed To Prevent Interstitial Condensation. AIP Conference Proceedings, 242(2010).
DOI: 10.1063/1.3453818
Google Scholar
[3]
Cerolini, S., Orazio, M. D., Perna, C. Di, & Stazi, A. (2009). Moisture buffering capacity of highly absorbing materials. Energy & Buildings, 41, 164–168. https://doi.org/10.1016/j.enbuild.2008.08.006.
DOI: 10.1016/j.enbuild.2008.08.006
Google Scholar
[4]
Elsacker, E., Vandelook, S., Brancart, J., Peeters, E., & De Laet, L. (2019). Mechanical , physical and chemical characterisation of mycelium-based composites with different types of lignocellulosic substrates. PLoS ONE, 14(7).
DOI: 10.1371/journal.pone.0213954
Google Scholar
[5]
Elsacker, E., Vandelook, S., Wylick, A. Van, Ruytinx, J., Laet, L. De, & Peeters, E. (2020). Science of the Total Environment A comprehensive framework for the production of mycelium-based lignocellulosic composites. Science of the Total Environment, 725, 138431. https://doi.org/10.1016/j.scitotenv.2020.138431.
DOI: 10.1016/j.scitotenv.2020.138431
Google Scholar
[6]
Girometta, C., Picco, A. M., Baiguera, R. M., Dondi, D., Babbini, S., Cartabia, M., Pellegrini, M., & Savino, E. (2019). Physico-Mechanical and Thermodynamic Properties of Mycelium-Based Biocomposites : A Review. Sustainability, 11. https://doi.org/10.3390/su11010281.
DOI: 10.3390/su11010281
Google Scholar
[7]
Jones, M., Chun, H., Yuen, R., & John, S. (2018). Waste ‐ derived low ‐ cost mycelium composite construction materials with improved fire safety. Wiley, April, 816–825. https://doi.org/10.1002/fam.2637.
DOI: 10.1002/fam.2637
Google Scholar
[8]
Kreiger, B. K., & Srubar, W. V. (2019). Moisture buffering in buildings : A review of experimental and numerical methods. Energy & Buildings, 202, 109394. https://doi.org/10.1016/j.enbuild.2019.109394.
DOI: 10.1016/j.enbuild.2019.109394
Google Scholar
[9]
Lee, J., Kim, J., Song, D., Kim, J., & Jang, C. (2017). Impact of external insulation and internal thermal density upon energy consumption of buildings in a temperate climate with four distinct seasons. Renewable and Sustainable Energy Reviews, 75(January 2016), 1081–1088. https://doi.org/10.1016/j.rser.2016.11.087.
DOI: 10.1016/j.rser.2016.11.087
Google Scholar
[10]
Roberts, B. C., Webber, M. E., & Ezekoye, O. A. (2015). Development of a multi-objective optimization tool for selecting thermal insulation materials in sustainable designs. Energy & Buildings, 105, 358–367. https://doi.org/10.1016/j.enbuild.2015.07.063.
DOI: 10.1016/j.enbuild.2015.07.063
Google Scholar
[11]
Rode, C., Peuhkuri, R. H., Mortensen, L. H., Hansen, K. K., Time, B., Gustavsen, A., Ojanen, T., Ahonene, J., Svennberg, K., & Arfvidsson, J. (2005). Moisture Buffering of Building Materials. DTU.
DOI: 10.1520/stp45403s
Google Scholar
[12]
Rode, C., Peuhkuri, R., Time, B., Svennberg, K., Ojanen, T., Mukhopadhyaya, P., Kumaran, M., & Dean, S. W. (2007). Moisture Buffer Value of Building Materials. Journal of ASTM International, 4(5), 100369. https://doi.org/10.1520/jai100369.
DOI: 10.1520/jai100369
Google Scholar