[1]
[Andreola 2017] Andreola, V. M.; Caracterização Física, Mecânica e Ambiental de Bio-concretos de Bambu. Rio de Janeiro: COPPE/UFRJ, (2017).
Google Scholar
[2]
[Toledo Filho et al. 1997] Materiais compósitos reforçados com fibras naturais: caracterização experimental. Tese de Doutorado. Departamento de Engenharia Civil-DEC-PUC-Rio/ DEC-Imperial College-Londres, UK. (1997).
DOI: 10.17771/pucrio.acad.2144
Google Scholar
[3]
[Żukowski 2017] Żukowski, Bartosz. Design and characterization of strain hardening curauá fiber cement-based composites. Tese de doutorado. Universidade Federal do Rio de Janeiro, Rio de Janeiro. 2017. Paper in a journal:.
DOI: 10.52041/srap.15317
Google Scholar
[4]
[Andreola et al. 2019] Andreola, V. M.; Da Gloria, M. Y. R.; Santos, D. O. J.; Toledo Filho, R. D. Partial replacement of cement by combination of fly ash and metakaolin in bamboo bioconcretes. Academic Journal of Civil Engineering: for the 3rd ICBBM, v. 37, n. 2, pp.102-106, (2019).
Google Scholar
[5]
[Arizzi et al. 2016] Arizzi, A. and Viles, H. and Martín-Sanchez, I. and Cultrone, G. Predicting the long-term durability of hemp-lime renders in inland and coastal areas using Mediterranean,Tropical and Semi-arid climatic simulations. Science of the Total Environment. v. 542, n. 2, pp.757-770, (2016).
DOI: 10.1016/j.scitotenv.2015.10.141
Google Scholar
[6]
[Benmahiddine 2020] Benmahiddine, F., Bennai, F., Cherif, R., Belarbi, R., Tahakourt, A., Abahri, K. (2020). Experimental investigation on the influence of immersion/drying cycles on the hygrothermal and mechanical properties of hemp concrete. Journal of Building Engineering, v. 32.
DOI: 10.1016/j.jobe.2020.101758
Google Scholar
[7]
[Da Gloria et al. 2021] Da Gloria, M. H. Y. R., Andreola, V. M., dos Santos, D. O. J., Pepe, M., & Toledo Filho, R. D. A comprehensive approach for designing workable bio-based cementitious composites. Journal of Building Engineering, (2021).
DOI: 10.1016/j.jobe.2020.101696
Google Scholar
[8]
[Marceau et al. 2017] Marceau, S. and Glé, P. and Guéguen-Minerbe, M. and Gourlay, E. and Moscardelli, S. and Nour, I., and Amziane, S. Influence of accelerated aging on the properties of hemp concretes. Construction and Building Materials, v. 139, pp.524-530. (2017).
DOI: 10.1016/j.conbuildmat.2016.11.129
Google Scholar
[9]
[Page et al. 2017] Page, J.; Sonebi, M.; Amziane, S. Design and multi-physical properties of a new hybrid hemp-flax composite material. Construction and building materials, v. 139, pp.502-512, (2017).
DOI: 10.1016/j.conbuildmat.2016.12.037
Google Scholar
[10]
[Piot et al. 2017] Piot, A., Béjat, T., Jay, A., Bessette, L., Wurtz, E., & Barnes-Davin, L. (2017). Study of a hempcrete wall exposed to outdoor climate: Effects of the coating. Construction and Building Materials, 139, 540-550.
DOI: 10.1016/j.conbuildmat.2016.12.143
Google Scholar
[11]
[Santos et al. 2017] Santos, D. O. J.; Da Gloria, M. Y. R.; Andreola, V. M.; Pepe, M.; Toledo Filho, R. D. Behaviour under Bending Loads of Workable Bamboo Bio-Concrete. Non-Conventional Materials and Technologies: NOCMAT for the XXI Century, v. 7, p.54, (2018).
DOI: 10.21741/9781945291838-7
Google Scholar
[12]
[Sheridan, 2020] Sheridan, J., Sonebi, M., Taylor, S., Amziane, S. (2020). The effect of long term weathering on hemp and rapeseed concrete. Cement and Concrete Research, 131, 106014.
DOI: 10.1016/j.cemconres.2020.106014
Google Scholar
[13]
[Viel et al. 2019] Viel, M. Collet, F., Lecieux, Y., Francois, M. L. M., Colson, V., Lanos, C., Lawrence, M. Resistance to mold development assessment of bio-based building materials. Composites Part B: Engineering, 158, 406-418. (2019).
DOI: 10.1016/j.compositesb.2018.09.063
Google Scholar
[14]
[Walker et al. 2014] Walker, R. and Pavia, S. and Mitchell, R. Mechanical properties and durability of hemp-lime concretes. Construction and Building Materials. v. 61, n. 2, pp.340-348, (2014).
DOI: 10.1016/j.conbuildmat.2014.02.065
Google Scholar
[15]
[Weller, 2019] Weller, H. colordistance: Distance Metrics for Image Color Similarity. R package version 1.1. 0. 2019. Magazine:.
Google Scholar
[16]
[De Castro et al. 2018] De Castro, V.G.; Guimarães, P. P. Deterioração e preservação da madeira. Journal EdURFESA, p.213, (2018).
Google Scholar
[17]
[De Souza et al. 2017] De Souza, R.; R., M.S.; Werle, A. P., Costa, E. B. C. Influência das variáveis atmosféricas na degradação dos materiais da construção civil. REEC - Revista Eletrônica de Engenharia Civil, (2017).
DOI: 10.5216/reec.v13i1.41448
Google Scholar
[18]
[Lima et al. 2008] Lima, P. R. L.; Toledo Filho, R. D. Uso de metacaulinita para incremento da durabilidade de compósitos à base de cimento reforçados com fibras de sisal. Ambiente construído, v. 8, n. 4, pp.7-19, (2008).
DOI: 10.22409/engevista.v15i1.363
Google Scholar
[19]
[Santos et al. 2013] Santos, J. A.; Duarte, C. Degradação e proteção superficial da madeira em exterior. Corrosão e Protecção de Materiais, v. 32, n. 1, pp.10-18, 2013. Standards and protocols:.
Google Scholar
[20]
[ABNT NBR 13276] Argamassa para assentamento e revestimento de paredes e tetos - Determinação do índice de consistência. ABNT (2005).
Google Scholar
[21]
[ABNT NBR 5733] Cimento Portland com Alta Resistencia Inicial. ABNT (1991).
Google Scholar
[22]
[ABNT NBR 5339] Ensaio de compressao de corpos-de-prova cilindricos. ABNT (2007).
Google Scholar
[23]
[Rilem 1978] Rilem, L. C. Functional classification of lightweight concrete. Mater. Struct, v. 11, pp.281-283, (1978).
Google Scholar