Durability of Bamboo Bio-Concretes Exposed to Natural Aging

Article Preview

Abstract:

In recent years, several studies on the durability of cementitious materials combined with vegetable fibers have been developed. In order to understand the properties of these materials in different environmental conditions, they can be subjected to accelerated aging through several cycles of controlled variations of humidity-temperature, wetting-drying, freezing-thawing. However, analyzes that expose such materials to real conditions of use during their useful life are scarce. As a result, this study analyzed the physical, thermal and mechanical behavior of bamboo bio-concretes produced with different volumes of bio-aggregates, which were exposed to the natural aging of the summer in the city of Rio de Janeiro (Brazil). The cementitious binder was is composed, by mass, of cement (30%), metakaolin (30%) and fly ash (40%). The water-to-cement ratio was as 0.30. The mixtures were produced with bamboo volumetric fraction of 30%; 40% and 50%. After 3 months of natural aging during the Brazilian summer (from December to March), the property determined in the hardened state was the compressive strength. In addition, a visual analysis by photograph was also realize. The results revealed that higher the volumetric fraction, higher the decrease of compressive strength. The visual analysis showed several changes of the external aspect of the bio-concretes.

You might also be interested in these eBooks

Info:

Pages:

834-841

Citation:

Online since:

January 2022

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2022 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] [Andreola 2017] Andreola, V. M.; Caracterização Física, Mecânica e Ambiental de Bio-concretos de Bambu. Rio de Janeiro: COPPE/UFRJ, (2017).

Google Scholar

[2] [Toledo Filho et al. 1997] Materiais compósitos reforçados com fibras naturais: caracterização experimental. Tese de Doutorado. Departamento de Engenharia Civil-DEC-PUC-Rio/ DEC-Imperial College-Londres, UK. (1997).

DOI: 10.17771/pucrio.acad.2144

Google Scholar

[3] [Żukowski 2017] Żukowski, Bartosz. Design and characterization of strain hardening curauá fiber cement-based composites. Tese de doutorado. Universidade Federal do Rio de Janeiro, Rio de Janeiro. 2017. Paper in a journal:.

DOI: 10.52041/srap.15317

Google Scholar

[4] [Andreola et al. 2019] Andreola, V. M.; Da Gloria, M. Y. R.; Santos, D. O. J.; Toledo Filho, R. D. Partial replacement of cement by combination of fly ash and metakaolin in bamboo bioconcretes. Academic Journal of Civil Engineering: for the 3rd ICBBM, v. 37, n. 2, pp.102-106, (2019).

Google Scholar

[5] [Arizzi et al. 2016] Arizzi, A. and Viles, H. and Martín-Sanchez, I. and Cultrone, G. Predicting the long-term durability of hemp-lime renders in inland and coastal areas using Mediterranean,Tropical and Semi-arid climatic simulations. Science of the Total Environment. v. 542, n. 2, pp.757-770, (2016).

DOI: 10.1016/j.scitotenv.2015.10.141

Google Scholar

[6] [Benmahiddine 2020] Benmahiddine, F., Bennai, F., Cherif, R., Belarbi, R., Tahakourt, A., Abahri, K. (2020). Experimental investigation on the influence of immersion/drying cycles on the hygrothermal and mechanical properties of hemp concrete. Journal of Building Engineering, v. 32.

DOI: 10.1016/j.jobe.2020.101758

Google Scholar

[7] [Da Gloria et al. 2021] Da Gloria, M. H. Y. R., Andreola, V. M., dos Santos, D. O. J., Pepe, M., & Toledo Filho, R. D. A comprehensive approach for designing workable bio-based cementitious composites. Journal of Building Engineering, (2021).

DOI: 10.1016/j.jobe.2020.101696

Google Scholar

[8] [Marceau et al. 2017] Marceau, S. and Glé, P. and Guéguen-Minerbe, M. and Gourlay, E. and Moscardelli, S. and Nour, I., and Amziane, S. Influence of accelerated aging on the properties of hemp concretes. Construction and Building Materials, v. 139, pp.524-530. (2017).

DOI: 10.1016/j.conbuildmat.2016.11.129

Google Scholar

[9] [Page et al. 2017] Page, J.; Sonebi, M.; Amziane, S. Design and multi-physical properties of a new hybrid hemp-flax composite material. Construction and building materials, v. 139, pp.502-512, (2017).

DOI: 10.1016/j.conbuildmat.2016.12.037

Google Scholar

[10] [Piot et al. 2017] Piot, A., Béjat, T., Jay, A., Bessette, L., Wurtz, E., & Barnes-Davin, L. (2017). Study of a hempcrete wall exposed to outdoor climate: Effects of the coating. Construction and Building Materials, 139, 540-550.

DOI: 10.1016/j.conbuildmat.2016.12.143

Google Scholar

[11] [Santos et al. 2017] Santos, D. O. J.; Da Gloria, M. Y. R.; Andreola, V. M.; Pepe, M.; Toledo Filho, R. D. Behaviour under Bending Loads of Workable Bamboo Bio-Concrete. Non-Conventional Materials and Technologies: NOCMAT for the XXI Century, v. 7, p.54, (2018).

DOI: 10.21741/9781945291838-7

Google Scholar

[12] [Sheridan, 2020] Sheridan, J., Sonebi, M., Taylor, S., Amziane, S. (2020). The effect of long term weathering on hemp and rapeseed concrete. Cement and Concrete Research, 131, 106014.

DOI: 10.1016/j.cemconres.2020.106014

Google Scholar

[13] [Viel et al. 2019] Viel, M. Collet, F., Lecieux, Y., Francois, M. L. M., Colson, V., Lanos, C., Lawrence, M. Resistance to mold development assessment of bio-based building materials. Composites Part B: Engineering, 158, 406-418. (2019).

DOI: 10.1016/j.compositesb.2018.09.063

Google Scholar

[14] [Walker et al. 2014] Walker, R. and Pavia, S. and Mitchell, R. Mechanical properties and durability of hemp-lime concretes. Construction and Building Materials. v. 61, n. 2, pp.340-348, (2014).

DOI: 10.1016/j.conbuildmat.2014.02.065

Google Scholar

[15] [Weller, 2019] Weller, H. colordistance: Distance Metrics for Image Color Similarity. R package version 1.1. 0. 2019. Magazine:.

Google Scholar

[16] [De Castro et al. 2018] De Castro, V.G.; Guimarães, P. P. Deterioração e preservação da madeira. Journal EdURFESA, p.213, (2018).

Google Scholar

[17] [De Souza et al. 2017] De Souza, R.; R., M.S.; Werle, A. P., Costa, E. B. C. Influência das variáveis atmosféricas na degradação dos materiais da construção civil. REEC - Revista Eletrônica de Engenharia Civil, (2017).

DOI: 10.5216/reec.v13i1.41448

Google Scholar

[18] [Lima et al. 2008] Lima, P. R. L.; Toledo Filho, R. D. Uso de metacaulinita para incremento da durabilidade de compósitos à base de cimento reforçados com fibras de sisal. Ambiente construído, v. 8, n. 4, pp.7-19, (2008).

DOI: 10.22409/engevista.v15i1.363

Google Scholar

[19] [Santos et al. 2013] Santos, J. A.; Duarte, C. Degradação e proteção superficial da madeira em exterior. Corrosão e Protecção de Materiais, v. 32, n. 1, pp.10-18, 2013. Standards and protocols:.

Google Scholar

[20] [ABNT NBR 13276] Argamassa para assentamento e revestimento de paredes e tetos - Determinação do índice de consistência. ABNT (2005).

Google Scholar

[21] [ABNT NBR 5733] Cimento Portland com Alta Resistencia Inicial. ABNT (1991).

Google Scholar

[22] [ABNT NBR 5339] Ensaio de compressao de corpos-de-prova cilindricos. ABNT (2007).

Google Scholar

[23] [Rilem 1978] Rilem, L. C. Functional classification of lightweight concrete. Mater. Struct, v. 11, pp.281-283, (1978).

Google Scholar