Link between Acoustic and Hygrothermal Behavior of Hemp Shiv and Pith Composites

Article Preview

Abstract:

Bio-based materials are an environmentally friendly alternative to classic construction materials, yet their generally low density can lead to poor acoustic properties. The acoustic performance of hemp shiv and sunflower pith composites is therefore analyzed using Kundt’s tube. Although the loose aggregates present an exceptional sound absorbing behavior, it can be notably worsened in the presence of certain binders. The Transmission Loss is nevertheless enhanced by the binders, although it does not exceed 20 dB in most cases. For both properties, the type of binder has been found to be the most influential parameter. Through the Kundt’s tube method, it is also possible to determine the geometrical parameters of the composites’ microstructure, which have been observed to be similar for materials presenting comparable hygrothermal properties and containing the same binder. In a previous work, an experimental correlation was found between the thermal conductivity and the interparticle porosity of the aforementioned composites, which is compared to theoretical thermal conductivity models from literature without finding any apparent correspondence.

You might also be interested in these eBooks

Info:

Pages:

801-811

Citation:

Online since:

January 2022

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2022 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Abbas, M. S., Gourdon, E., Glé, P., McGregor, F., Ferroukhi, M. Y., & Fabbri, A. (2021). Relationship between hygrothermal and acoustical behavior of hemp and sunflower composites. Building and Environment, 188(October 2020). https://doi.org/10.1016/j.buildenv.2020.107462.

DOI: 10.1016/j.buildenv.2020.107462

Google Scholar

[2] Abbas, M. S., Mcgregor, F., Fabbri, A., & Ferroukhi, M. Y. (2020). The use of pith in the formulation of lightweight bio-based composites : impact on mechanical and hygrothermal properties. Construction and Building Materials, 259. https://doi.org/10.1016/j.conbuildmat. 2020.120573.

DOI: 10.1016/j.conbuildmat.2020.120573

Google Scholar

[3] Abbas, M. S., McGregor, F., Fabbri, A., & Ferroukhi, Y. (2019). Influence of origin and year of harvest on the performance of pith mortars. 3rd International Conference of Bio-Based Building Materials, 42–48.

Google Scholar

[4] Ahmad, M. R., Chen, B., Haque, M. A., & Oderji, S. Y. (2020). Multiproperty characterization of cleaner and energy-efficient vegetal concrete based on one-part geopolymer binder. Journal of Cleaner Production, 253. https://doi.org/10.1016/j.jclepro. 2019.119916.

DOI: 10.1016/j.jclepro.2019.119916

Google Scholar

[5] Cambonie, T., & Gourdon, E. (2018). Innovative origami-based solutions for enhanced quarter-wavelength resonators. Journal of Sound and Vibration, 434, 379–403. https://doi.org/10.1016/j.jsv.2018.07.029.

DOI: 10.1016/j.jsv.2018.07.029

Google Scholar

[6] Cérézo, V. (2005). Propriétés mécaniques, thermiques et acoustiques d'un matériau à base de particules végétales : approche expérimentale et modélisation théorique. http://theses.insa-lyon.fr/publication/2005isal0037/these.pdf.

Google Scholar

[7] Chamoin, J. (2013). Optimisation des propriétés (physiques, mécaniques et hydriques) de bétons de chanvre par la maîtrise de la formulation. INSA de Rennes.

Google Scholar

[8] Champoux, Y., & Allard, J.-F. (1991). Dynamic tortuosity and bulk modulus in air-saturated porous media. Journal of Applied Physics, 70, 1975–(1979).

DOI: 10.1063/1.349482

Google Scholar

[9] Cornaro, C., Zanella, V., Robazza, P., Belloni, E., & Buratti, C. (2020). An innovative straw bale wall package for sustainable buildings : experimental characterization , energy and environmental performance assessment. Energy & Buildings, 208, 109636. https://doi.org/10.1016/j.enbuild.2019.109636.

DOI: 10.1016/j.enbuild.2019.109636

Google Scholar

[10] D'Alessandro, F., Bianchi, F., Baldinelli, G., Rotili, A., & Schiavoni, S. (2017). Straw bale constructions : Laboratory , in fi eld and numerical assessment of energy and environmental performance. 11(April), 56–68. https://doi.org/10.1016/j.jobe.2017.03.012.

DOI: 10.1016/j.jobe.2017.03.012

Google Scholar

[11] Eucken, A. (1932). Die Wärmeleitfähigkeit Keramischer, Fester Stoffe – Ihre Berechnung aus der Wärmeleitfähigkeit der Bestandteile. VDI Forschungsheft 353, Beilage Zu, Forschung Auf Dem Ggebiete Des Ingenieurwesens, Ausgabe B, Band 3.

DOI: 10.1007/978-3-662-02217-7_2

Google Scholar

[12] Glé, P. (2013). Acoustique des Matériaux du Bâtiment à base de Fibres et Particules Végétales - Outils de Caractérisation, Modélisation et Optimisation [ENTPE Lyon]. https://tel.archives-ouvertes.fr/tel-00923665.

Google Scholar

[13] Gourdon, E., Chabriac, P.-A., Glé, P., Fabbri, A., & McGregor, F. (2015). Acoustical characterization and modelling of agricultural byproducts for building insulation. First International Conference on Bio-Based Building Materials, 33(2), 449–453.

Google Scholar

[14] International Energy Agency, & UN Environment Programme. (2020). 2020 Global Status Report for Buildings and Construction.

Google Scholar

[15] International Organization for Standardization. (2007). ISO 8894-2:2007, Refractory materials - Determination of thermal conductivity - Part 2: Hot-wire method (parallel).

Google Scholar

[16] International Organization for Standardization. (2016). NF EN ISO 12572:2016, Hygrothermal performance of building materials and products - Determination of water vapour transmission properties - Cup method.

DOI: 10.3403/30294357

Google Scholar

[17] Iwase, T., Izumi, Y., & Kawabata, R. (1998). A new measuring method for sound propagation constant by using sound tube without any air spaces back of a test material. Internoise 98, 4.

Google Scholar

[18] Johnson, D. L., Koplik, J., & Dashen, R. (1987). Theory of dynamic permeability and tortuosity in fluid-saturated porous media. Journal of Fluid Mechanics, 176, 379–402. https://doi.org/https://doi.org/10.1017/S0022112087000727.

DOI: 10.1017/s0022112087000727

Google Scholar

[19] Kirkpatrick, S. (1973). Percolation and conduction. Rev. Mod. Phys., 45, 574–588.

DOI: 10.1103/revmodphys.45.574

Google Scholar

[20] Landauer, R. (1952). The electrical resistance of binary metallic mixtures. J. Appl. Phys., 23, 779–784.

Google Scholar

[21] Loeb, A. (1954). Thermal Conductivity : VIII , A Theory of Thermal Conductivity of Porous Materials. Journal of the American Ceramic Society, 37(2), 96–99.

DOI: 10.1111/j.1551-2916.1954.tb20107.x

Google Scholar

[22] Lupíšek, A., Vaculíková, M., Mancík, S., Hodková, J., & Ržika, J. (2015). Design strategies for low embodied carbon and low embodied energy buildings: Principles and examples. Energy Procedia, 83, 147–156. https://doi.org/10.1016/j.egypro.2015.12.205.

DOI: 10.1016/j.egypro.2015.12.205

Google Scholar

[23] Machrafi, H., & Lebon, G. (2015). Size and porosity effects on thermal conductivity of nanoporous material with an extension to nanoporous particles embedded in a host matrix. Physics Letters, Section A: General, Atomic and Solid State Physics, 379(12–13), 968–973. https://doi.org/10.1016/j.physleta.2015.01.027.

DOI: 10.1016/j.physleta.2015.01.027

Google Scholar

[24] Maxwell, J. C. (1954). A Treatise on Electricity and Magnetism (third ed.). Dover Publications Inc.

Google Scholar

[25] McGregor, F., Heath, A., Fodde, E., & Shea, A. (2014). Conditions affecting the moisture buffering measurement performed on compressed earth blocks. Building and Environment, 75, 11–18. https://doi.org/10.1016/j.buildenv.2014.01.009.

DOI: 10.1016/j.buildenv.2014.01.009

Google Scholar

[26] Mnasri, F., Bahria, S., Slimani, M. E. A., Lahoucine, O., & El Ganaoui, M. (2020). Building incorporated bio-based materials: Experimental and numerical study. Journal of Building Engineering, 28(October 2019). https://doi.org/10.1016/j.jobe.2019.101088.

DOI: 10.1016/j.jobe.2019.101088

Google Scholar

[27] Olny, X., & Panneton, R. (2008). Acoustical determination of the parameters governing thermal dissipation in porous media. The Journal of the Acoustical Society of America, 123(2), 814–824. https://doi.org/10.1121/1.2828066.

DOI: 10.1121/1.2828066

Google Scholar

[28] Panneton, R., & Olny, X. (2006). Acoustical determination of the parameters governing viscous dissipation in porous media. The Journal of the Acoustical Society of America, 119(4), 2027–2040. https://doi.org/10.1121/1.2169923.

DOI: 10.1121/1.2169923

Google Scholar

[29] Rode, C., Peuhkuri, R. H., Mortensen, L. H., Hansen, K. K., Time, B., Gustavsen, A., Ojanen, T., Ahonen, J., Svennberg, K., & Arfvidsson, J. (2005). Moisture Buffering of Building Materials.

DOI: 10.1520/stp45403s

Google Scholar

[30] Utsuno, H., Tanaka, T., & Fujikawa, T. (1989). Transfer function method for measuring characteristic impedance and propagation constant of porous materials. Journal of the Acoustical Society of America, 86(2), 637–643. https://doi.org/10.1121/1.398241.

DOI: 10.1121/1.398241

Google Scholar

[31] Zwikker, C., & Kosten, C.W. (1949). Sound Absorbing Materials. Elsevier Publishing Company.

Google Scholar