[1]
Abbas, M. S., Gourdon, E., Glé, P., McGregor, F., Ferroukhi, M. Y., & Fabbri, A. (2021). Relationship between hygrothermal and acoustical behavior of hemp and sunflower composites. Building and Environment, 188(October 2020). https://doi.org/10.1016/j.buildenv.2020.107462.
DOI: 10.1016/j.buildenv.2020.107462
Google Scholar
[2]
Abbas, M. S., Mcgregor, F., Fabbri, A., & Ferroukhi, M. Y. (2020). The use of pith in the formulation of lightweight bio-based composites : impact on mechanical and hygrothermal properties. Construction and Building Materials, 259. https://doi.org/10.1016/j.conbuildmat. 2020.120573.
DOI: 10.1016/j.conbuildmat.2020.120573
Google Scholar
[3]
Abbas, M. S., McGregor, F., Fabbri, A., & Ferroukhi, Y. (2019). Influence of origin and year of harvest on the performance of pith mortars. 3rd International Conference of Bio-Based Building Materials, 42–48.
Google Scholar
[4]
Ahmad, M. R., Chen, B., Haque, M. A., & Oderji, S. Y. (2020). Multiproperty characterization of cleaner and energy-efficient vegetal concrete based on one-part geopolymer binder. Journal of Cleaner Production, 253. https://doi.org/10.1016/j.jclepro. 2019.119916.
DOI: 10.1016/j.jclepro.2019.119916
Google Scholar
[5]
Cambonie, T., & Gourdon, E. (2018). Innovative origami-based solutions for enhanced quarter-wavelength resonators. Journal of Sound and Vibration, 434, 379–403. https://doi.org/10.1016/j.jsv.2018.07.029.
DOI: 10.1016/j.jsv.2018.07.029
Google Scholar
[6]
Cérézo, V. (2005). Propriétés mécaniques, thermiques et acoustiques d'un matériau à base de particules végétales : approche expérimentale et modélisation théorique. http://theses.insa-lyon.fr/publication/2005isal0037/these.pdf.
Google Scholar
[7]
Chamoin, J. (2013). Optimisation des propriétés (physiques, mécaniques et hydriques) de bétons de chanvre par la maîtrise de la formulation. INSA de Rennes.
Google Scholar
[8]
Champoux, Y., & Allard, J.-F. (1991). Dynamic tortuosity and bulk modulus in air-saturated porous media. Journal of Applied Physics, 70, 1975–(1979).
DOI: 10.1063/1.349482
Google Scholar
[9]
Cornaro, C., Zanella, V., Robazza, P., Belloni, E., & Buratti, C. (2020). An innovative straw bale wall package for sustainable buildings : experimental characterization , energy and environmental performance assessment. Energy & Buildings, 208, 109636. https://doi.org/10.1016/j.enbuild.2019.109636.
DOI: 10.1016/j.enbuild.2019.109636
Google Scholar
[10]
D'Alessandro, F., Bianchi, F., Baldinelli, G., Rotili, A., & Schiavoni, S. (2017). Straw bale constructions : Laboratory , in fi eld and numerical assessment of energy and environmental performance. 11(April), 56–68. https://doi.org/10.1016/j.jobe.2017.03.012.
DOI: 10.1016/j.jobe.2017.03.012
Google Scholar
[11]
Eucken, A. (1932). Die Wärmeleitfähigkeit Keramischer, Fester Stoffe – Ihre Berechnung aus der Wärmeleitfähigkeit der Bestandteile. VDI Forschungsheft 353, Beilage Zu, Forschung Auf Dem Ggebiete Des Ingenieurwesens, Ausgabe B, Band 3.
DOI: 10.1007/978-3-662-02217-7_2
Google Scholar
[12]
Glé, P. (2013). Acoustique des Matériaux du Bâtiment à base de Fibres et Particules Végétales - Outils de Caractérisation, Modélisation et Optimisation [ENTPE Lyon]. https://tel.archives-ouvertes.fr/tel-00923665.
Google Scholar
[13]
Gourdon, E., Chabriac, P.-A., Glé, P., Fabbri, A., & McGregor, F. (2015). Acoustical characterization and modelling of agricultural byproducts for building insulation. First International Conference on Bio-Based Building Materials, 33(2), 449–453.
Google Scholar
[14]
International Energy Agency, & UN Environment Programme. (2020). 2020 Global Status Report for Buildings and Construction.
Google Scholar
[15]
International Organization for Standardization. (2007). ISO 8894-2:2007, Refractory materials - Determination of thermal conductivity - Part 2: Hot-wire method (parallel).
Google Scholar
[16]
International Organization for Standardization. (2016). NF EN ISO 12572:2016, Hygrothermal performance of building materials and products - Determination of water vapour transmission properties - Cup method.
DOI: 10.3403/30294357
Google Scholar
[17]
Iwase, T., Izumi, Y., & Kawabata, R. (1998). A new measuring method for sound propagation constant by using sound tube without any air spaces back of a test material. Internoise 98, 4.
Google Scholar
[18]
Johnson, D. L., Koplik, J., & Dashen, R. (1987). Theory of dynamic permeability and tortuosity in fluid-saturated porous media. Journal of Fluid Mechanics, 176, 379–402. https://doi.org/https://doi.org/10.1017/S0022112087000727.
DOI: 10.1017/s0022112087000727
Google Scholar
[19]
Kirkpatrick, S. (1973). Percolation and conduction. Rev. Mod. Phys., 45, 574–588.
DOI: 10.1103/revmodphys.45.574
Google Scholar
[20]
Landauer, R. (1952). The electrical resistance of binary metallic mixtures. J. Appl. Phys., 23, 779–784.
Google Scholar
[21]
Loeb, A. (1954). Thermal Conductivity : VIII , A Theory of Thermal Conductivity of Porous Materials. Journal of the American Ceramic Society, 37(2), 96–99.
DOI: 10.1111/j.1551-2916.1954.tb20107.x
Google Scholar
[22]
Lupíšek, A., Vaculíková, M., Mancík, S., Hodková, J., & Ržika, J. (2015). Design strategies for low embodied carbon and low embodied energy buildings: Principles and examples. Energy Procedia, 83, 147–156. https://doi.org/10.1016/j.egypro.2015.12.205.
DOI: 10.1016/j.egypro.2015.12.205
Google Scholar
[23]
Machrafi, H., & Lebon, G. (2015). Size and porosity effects on thermal conductivity of nanoporous material with an extension to nanoporous particles embedded in a host matrix. Physics Letters, Section A: General, Atomic and Solid State Physics, 379(12–13), 968–973. https://doi.org/10.1016/j.physleta.2015.01.027.
DOI: 10.1016/j.physleta.2015.01.027
Google Scholar
[24]
Maxwell, J. C. (1954). A Treatise on Electricity and Magnetism (third ed.). Dover Publications Inc.
Google Scholar
[25]
McGregor, F., Heath, A., Fodde, E., & Shea, A. (2014). Conditions affecting the moisture buffering measurement performed on compressed earth blocks. Building and Environment, 75, 11–18. https://doi.org/10.1016/j.buildenv.2014.01.009.
DOI: 10.1016/j.buildenv.2014.01.009
Google Scholar
[26]
Mnasri, F., Bahria, S., Slimani, M. E. A., Lahoucine, O., & El Ganaoui, M. (2020). Building incorporated bio-based materials: Experimental and numerical study. Journal of Building Engineering, 28(October 2019). https://doi.org/10.1016/j.jobe.2019.101088.
DOI: 10.1016/j.jobe.2019.101088
Google Scholar
[27]
Olny, X., & Panneton, R. (2008). Acoustical determination of the parameters governing thermal dissipation in porous media. The Journal of the Acoustical Society of America, 123(2), 814–824. https://doi.org/10.1121/1.2828066.
DOI: 10.1121/1.2828066
Google Scholar
[28]
Panneton, R., & Olny, X. (2006). Acoustical determination of the parameters governing viscous dissipation in porous media. The Journal of the Acoustical Society of America, 119(4), 2027–2040. https://doi.org/10.1121/1.2169923.
DOI: 10.1121/1.2169923
Google Scholar
[29]
Rode, C., Peuhkuri, R. H., Mortensen, L. H., Hansen, K. K., Time, B., Gustavsen, A., Ojanen, T., Ahonen, J., Svennberg, K., & Arfvidsson, J. (2005). Moisture Buffering of Building Materials.
DOI: 10.1520/stp45403s
Google Scholar
[30]
Utsuno, H., Tanaka, T., & Fujikawa, T. (1989). Transfer function method for measuring characteristic impedance and propagation constant of porous materials. Journal of the Acoustical Society of America, 86(2), 637–643. https://doi.org/10.1121/1.398241.
DOI: 10.1121/1.398241
Google Scholar
[31]
Zwikker, C., & Kosten, C.W. (1949). Sound Absorbing Materials. Elsevier Publishing Company.
Google Scholar