Valorization of Vegetal Fibers in Anti-Fissuration Screed Mortar Formulation

Article Preview

Abstract:

This work, which is part of the FIBRABETON project, aims to anti-fissuration screed formulations proposition based on natural fibers and comparing these formulations to a synthetic fiber-screed formulation. Different natural fiber (hemp, flax, miscanthus and bamboo) with contents rangingfrom 0.4% to 0.8% were tested. The spread (slump), the shrinkage and mechanical strength (flexural and compressive) studies were carried out. SEM images of natural fibers and natural fibers screed formulation were analyzed. Overall, it is found that all natural fibers screed formulations tested, have shown better behaviour than the synthetic fibers screed formulation in point of view workability, shrinkage and mechanical properties. The lowest shrinkage value is found in the case of the H5 (5 mm long hemp fibers) screed formulation. Generally speaking, the mechanical strength values (flexural and compressive) are more or less similar between natural soft fibers (hemp and flax) and rigid fibers (miscanthus and bamboo). Taking in account slump, shrinkage and mechanical behavior, the proposed good compromise in this work is the H5 screed formulation.

You might also be interested in these eBooks

Info:

* - Corresponding Author

[1] FRD & al. Mémento 2020: Panorama des marchés. Fibers végétales techniques à usages matériaux (hors bois) en France. 48 p.

Google Scholar

[2] Baillie C., Jayasinghe R. Green Composites. Polymer Composites and the Environment. 1st Edition. Woodhead Publishing. 2004. 320 p.

Google Scholar

[3] Bledzki, A. K., Sperber, V. E., Faruk. O. Natural and wood fiber reinforcement in polymers. Vol. 13. Smithers Rapra Publishing. (2002).

Google Scholar

[4] Mostefai N., Hamzaoui R., Guessasma S., Aw A., Nouri H. Microstructure and mechanical performance of modified hemp fiber and shiv mortars: Discovering the optimal formulation. Materials & Design, 84: 359-371, (2015).

DOI: 10.1016/j.matdes.2015.06.102

Google Scholar

[5] Wang Xing-long Shi Yong-gang. Experimental investigation of the performance of Plaster Mortar modified with Polypropylene fiber, Journal of Quality of Civil Engineering and Construction,.2006(8):23-27.

Google Scholar

[6] S. Wen, Fiber concrete research on different fiber volume dosage, Adv. Mater. Res. 717 (2013) 283–286. https://doi.org/10.4028/www.scientific.net/AMR.717.283.

DOI: 10.4028/www.scientific.net/amr.717.283

Google Scholar

[7] Z. Marcalikova, R. Cajka, V. Bilek, D. Bujdos, O. Sucharda, Determination of mechanical characteristics for fiber-reinforced concrete with straight and hooked fibers, Crystals. 10 (2020) 1–21. https://doi.org/10.3390/cryst10060545.

DOI: 10.3390/cryst10060545

Google Scholar

[8] Li Z., Wang W., Wang L. Properties of hemp fiber reinforced concrete composites. Composites Part A: Applied science and manufacturing, 37 (3), 497-505, (2006).

DOI: 10.1016/j.compositesa.2005.01.032

Google Scholar

[9] Kirker A., Debicki G., Bali A., Khenfer M.M., Chabannet M. Mechanical properties of date palm fibers and concrete reinforced with date palm fibers in hot-dry climate. Cement & Concrete Composites. 27, p.554–564, (2005).

DOI: 10.1016/j.cemconcomp.2004.09.015

Google Scholar

[10] Mohanty A.K., Misra M. et Drzal L.T. Natural Fibers, Biopolymers, and Biocomposites. CRC Press, (2005).

DOI: 10.1201/9780203508206.ch1

Google Scholar

[11] Netravali A.N. Biodegradable natural fiber composites. Woodhead Publishing Series, 9:271-309, (2005).

Google Scholar

[12] Pickering K.L. Properties and performance of natural-fiber composites. Woodhead Publishing. 2008. 557 p.

Google Scholar

[13] Chafei, S. Influence de différents traitements sur les comportements rhéologique et mécanique d'un composite cimentaire mortier‑fibers de lin. Thèse, Université de Caen Basse‑Normandie, Caen, France, (2014).

DOI: 10.36315/2019v2end062

Google Scholar

[14] Singh, S.M. Studies on the Durability of Plant Fibers Reinforced Concrete Products. Joint Symposium RILEM/CIB/NCCL, Baghdad Iraq. 1986, pp. C 127- C 130.

Google Scholar

[15] Projets Wikimedia, 2009. Rapport eau-ciment. Disponible en ligne : https://fr.wikipedia.org/wiki/Béton_de_ciment.

Google Scholar

[16] Moll L., Wever C., Völkering G. et Pude R. Increase of miscanthus cultivation with new roles in materials production—a review. Agronomy, 10(2), (2020).

DOI: 10.3390/agronomy10020308

Google Scholar

[17] Sáez-Pérez M.P., Brümmer M. et Durán-Suárez J.A. A review of the factors affecting the properties and performance of hemp aggregate concretes. Journal of Building Engineering, 31, (2020).

DOI: 10.1016/j.jobe.2020.101323

Google Scholar

[18] Sedan D., Pagnoux C., Smith A. et Chotard T. Interaction fiber de chanvre/ciment : influence sur les propriétés mécaniques du composite. Matériaux & Techniques, 95 :133–142, (2007).

DOI: 10.1051/mattech:2007038

Google Scholar

[19] Page J. Formulation et caractérisation d'un composite cimentaire biofibré pour des procédés de construction préfabriquée. Thèse, Normandie Université, (2017).

Google Scholar

[20] Wong K.J., Yousif B.F. et Low K.O. The effects of alkali treatment on the interfacial adhesion of bamboo fibers. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 224(3) :139–148, (2010).

DOI: 10.1243/14644207jmda304

Google Scholar

[21] C. Onésippe, N. Passe-Coutrin, F. Toro, S. Delvasto, K. Bilba, M.A. Arsène, Sugar cane bagasse fibers reinforced cement composites: Thermal considerations, Compos. Part A Appl. Sci. Manuf. 41 (2010) 549–556. https://doi.org/10.1016/j.compositesa.2010.01.002.

DOI: 10.1016/j.compositesa.2010.01.002

Google Scholar

[22] M. Ardanuy, J. Claramunt, R. Arévalo, F. Parés, E. Aracri, T. Vidal, Nanofibrillated cellulose (NFC) as a potential reinforcement for high performance cement mortar composites, BioResources. 7 (2012) 3883–3894.

Google Scholar

[23] M. Ardanuy, J. Claramunt, J.A. García-Hortal, M. Barra, Fiber-matrix interactions in cement mortar composites reinforced with cellulosic fibers, Cellulose. 18 (2011) 281–289.

DOI: 10.1007/s10570-011-9493-3

Google Scholar

[24] J. Claramunt, M. Ardanuy, J.A. García-Hortal, R.D.T. Filho, The hornification of vegetal fibers to improve the durability of cement mortar composites, Cem. Concr. Compos. 33 (2011) 586–595.

DOI: 10.1016/j.cemconcomp.2011.03.003

Google Scholar