[1]
FRD & al. Mémento 2020: Panorama des marchés. Fibers végétales techniques à usages matériaux (hors bois) en France. 48 p.
Google Scholar
[2]
Baillie C., Jayasinghe R. Green Composites. Polymer Composites and the Environment. 1st Edition. Woodhead Publishing. 2004. 320 p.
Google Scholar
[3]
Bledzki, A. K., Sperber, V. E., Faruk. O. Natural and wood fiber reinforcement in polymers. Vol. 13. Smithers Rapra Publishing. (2002).
Google Scholar
[4]
Mostefai N., Hamzaoui R., Guessasma S., Aw A., Nouri H. Microstructure and mechanical performance of modified hemp fiber and shiv mortars: Discovering the optimal formulation. Materials & Design, 84: 359-371, (2015).
DOI: 10.1016/j.matdes.2015.06.102
Google Scholar
[5]
Wang Xing-long Shi Yong-gang. Experimental investigation of the performance of Plaster Mortar modified with Polypropylene fiber, Journal of Quality of Civil Engineering and Construction,.2006(8):23-27.
Google Scholar
[6]
S. Wen, Fiber concrete research on different fiber volume dosage, Adv. Mater. Res. 717 (2013) 283–286. https://doi.org/10.4028/www.scientific.net/AMR.717.283.
DOI: 10.4028/www.scientific.net/amr.717.283
Google Scholar
[7]
Z. Marcalikova, R. Cajka, V. Bilek, D. Bujdos, O. Sucharda, Determination of mechanical characteristics for fiber-reinforced concrete with straight and hooked fibers, Crystals. 10 (2020) 1–21. https://doi.org/10.3390/cryst10060545.
DOI: 10.3390/cryst10060545
Google Scholar
[8]
Li Z., Wang W., Wang L. Properties of hemp fiber reinforced concrete composites. Composites Part A: Applied science and manufacturing, 37 (3), 497-505, (2006).
DOI: 10.1016/j.compositesa.2005.01.032
Google Scholar
[9]
Kirker A., Debicki G., Bali A., Khenfer M.M., Chabannet M. Mechanical properties of date palm fibers and concrete reinforced with date palm fibers in hot-dry climate. Cement & Concrete Composites. 27, p.554–564, (2005).
DOI: 10.1016/j.cemconcomp.2004.09.015
Google Scholar
[10]
Mohanty A.K., Misra M. et Drzal L.T. Natural Fibers, Biopolymers, and Biocomposites. CRC Press, (2005).
DOI: 10.1201/9780203508206.ch1
Google Scholar
[11]
Netravali A.N. Biodegradable natural fiber composites. Woodhead Publishing Series, 9:271-309, (2005).
Google Scholar
[12]
Pickering K.L. Properties and performance of natural-fiber composites. Woodhead Publishing. 2008. 557 p.
Google Scholar
[13]
Chafei, S. Influence de différents traitements sur les comportements rhéologique et mécanique d'un composite cimentaire mortier‑fibers de lin. Thèse, Université de Caen Basse‑Normandie, Caen, France, (2014).
DOI: 10.36315/2019v2end062
Google Scholar
[14]
Singh, S.M. Studies on the Durability of Plant Fibers Reinforced Concrete Products. Joint Symposium RILEM/CIB/NCCL, Baghdad Iraq. 1986, pp. C 127- C 130.
Google Scholar
[15]
Projets Wikimedia, 2009. Rapport eau-ciment. Disponible en ligne : https://fr.wikipedia.org/wiki/Béton_de_ciment.
Google Scholar
[16]
Moll L., Wever C., Völkering G. et Pude R. Increase of miscanthus cultivation with new roles in materials production—a review. Agronomy, 10(2), (2020).
DOI: 10.3390/agronomy10020308
Google Scholar
[17]
Sáez-Pérez M.P., Brümmer M. et Durán-Suárez J.A. A review of the factors affecting the properties and performance of hemp aggregate concretes. Journal of Building Engineering, 31, (2020).
DOI: 10.1016/j.jobe.2020.101323
Google Scholar
[18]
Sedan D., Pagnoux C., Smith A. et Chotard T. Interaction fiber de chanvre/ciment : influence sur les propriétés mécaniques du composite. Matériaux & Techniques, 95 :133–142, (2007).
DOI: 10.1051/mattech:2007038
Google Scholar
[19]
Page J. Formulation et caractérisation d'un composite cimentaire biofibré pour des procédés de construction préfabriquée. Thèse, Normandie Université, (2017).
Google Scholar
[20]
Wong K.J., Yousif B.F. et Low K.O. The effects of alkali treatment on the interfacial adhesion of bamboo fibers. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 224(3) :139–148, (2010).
DOI: 10.1243/14644207jmda304
Google Scholar
[21]
C. Onésippe, N. Passe-Coutrin, F. Toro, S. Delvasto, K. Bilba, M.A. Arsène, Sugar cane bagasse fibers reinforced cement composites: Thermal considerations, Compos. Part A Appl. Sci. Manuf. 41 (2010) 549–556. https://doi.org/10.1016/j.compositesa.2010.01.002.
DOI: 10.1016/j.compositesa.2010.01.002
Google Scholar
[22]
M. Ardanuy, J. Claramunt, R. Arévalo, F. Parés, E. Aracri, T. Vidal, Nanofibrillated cellulose (NFC) as a potential reinforcement for high performance cement mortar composites, BioResources. 7 (2012) 3883–3894.
Google Scholar
[23]
M. Ardanuy, J. Claramunt, J.A. García-Hortal, M. Barra, Fiber-matrix interactions in cement mortar composites reinforced with cellulosic fibers, Cellulose. 18 (2011) 281–289.
DOI: 10.1007/s10570-011-9493-3
Google Scholar
[24]
J. Claramunt, M. Ardanuy, J.A. García-Hortal, R.D.T. Filho, The hornification of vegetal fibers to improve the durability of cement mortar composites, Cem. Concr. Compos. 33 (2011) 586–595.
DOI: 10.1016/j.cemconcomp.2011.03.003
Google Scholar