[1]
P. Chastas, T. Theodosiou, D. Bikas, Embodied energy in residential buildingstowards the nearly zero energy building: a literature review, Build. Environ. 105, 2016, 267–282.
DOI: 10.1016/j.buildenv.2016.05.040
Google Scholar
[2]
F. Asdrubali, A.L. Pisello, F. D'Alessandro, F. Bianchi, C. Fabiani, M. Cornicchia, A. Rotili, Experimental and numerical characterization of innovative cardboard based panels: thermal and acoustic performance analysis and life cycle assessment, Build. Environ. 95, 2016, 145–159.
DOI: 10.1016/j.buildenv.2015.09.003
Google Scholar
[3]
Gao, J., Yu, W., & Pan, N. Structures and properties of the goose down as a material for thermal insulation. Textile Research Journal, 77, 2007, 617-626.
DOI: 10.1177/0040517507079408
Google Scholar
[4]
Gibson, P., & Lee, C. Application of nanofiber technology to nonwoven thermal insulation. Journal of Engineered Fibers and Fabrics, 2, 2007, 32-40.
DOI: 10.1177/155892500700200204
Google Scholar
[5]
E.P. Green, F.T. Short, World Atlas of Sea grasses : Present Status and Future Conservation, University of California Press, (2003).
Google Scholar
[6]
Chessa, L. A., Fustier, V., Fernandez, C., Mura, F., Pais, A., Pergent, G., Serra S. and Vitale, L. Contribution to the knowledge of Banquettes, of Posidonia oceanic (L.) Delile in Sardinia Island. In: Proceedings of the 4th International Seagrass Biology Workshop, Biologia Marina Mediterranea, Corsica, France, 2000, vol. 7, 35–38.
Google Scholar
[7]
Dural, M.U., Cavas, L., Papageoriou, S.K., Katsaros, F.K, Methylene blue absorption on activated carbon prepared from Posidonia Oceanica (L.) dead leaves : kinetics and equilibrium studies, In : Chemical Engineering Journal, 2011, vol. 168, 77-85.
DOI: 10.1016/j.cej.2010.12.038
Google Scholar
[8]
A. Macia, F.J. Baeza, J.M. Saval, S. Ivora, Composites Part B, 104, 2016, 1-8.
Google Scholar
[9]
A. Korjenic, V. Petranek, J. Zach, J. Hroudova, Development and performance evaluation of natural thermal-insulation materials composed of renewable resources, Energy Build. 43, 2011, 2159-2168.
DOI: 10.1016/j.enbuild.2011.06.012
Google Scholar
[10]
K. Wei, C. Lv, M. Chen, X. Zhou, Z. Dai, D. Shen, Development and performance evaluation of a new thermal insulation material from rice straw using high frequency hot-pressing, Energy Build. 87, 2015, 116-122.
DOI: 10.1016/j.enbuild.2014.11.026
Google Scholar
[11]
Kuqo, A., Boci, I., Vito, S., and Vishkulli, S, Mechanical properties of lightweight concrete composed with Posidonia oceanica fibres, Zastita Materijala, 59 (4), 2018, 519-523.
DOI: 10.5937/zasmat1804519k
Google Scholar
[12]
Ferrero, B., Boronat, T., Moriana, R., Gimeno, O.F., and Balart, R., Green composites based on wheat Gluten Matrix and Posidonia oceanica waste fibers as reinforcements, Polymer Composites, 34, 2013, 1663-1669.
DOI: 10.1002/pc.22567
Google Scholar
[13]
Puglia, D., Petruci, R., Luzi, F., Kenny, J.M., and Torre, L. Revalorisation of Posidonia Oceanica as Reinforcement in Polyethylene/Maleic Anhydride Grafted Polyethylene Composites, Journal of Renewable Materials, 2, 2014, 66-76.
DOI: 10.7569/jrm.2013.634134
Google Scholar
[14]
Garcia, D.G, Carrillo, L.Q and Montanes, N., Manufacturing and characterization of composite fibreboards with Posidonia oceanica wastes with an environmentally-friendly binder from epoxy resin. Materials, 23, 2017, 11-35.
DOI: 10.3390/ma11010035
Google Scholar
[15]
Fu, S. Y., & Mai Y. W., Thermal conductivity of misaligned short-fiber-reinforced polymer composites. Journal of Applied Polymer Science, 88, 2003, 1494-1505.
DOI: 10.1002/app.11864
Google Scholar
[16]
Ncibi MC, Jeanne-Rose V, Mahjoub B, et al. Preparation and characterization of raw chars and physically activated carbons derived from marine Posidonia Oceanica (L.) fibers. J Hazard Mater 2009, 240-249.
DOI: 10.1016/j.jhazmat.2008.09.126
Google Scholar
[17]
Thermal performance of building materials and products - Determination of thermal resistance by means of guarded hot plate and heat flow meter methods - Products of high and medium thermal resistance.
DOI: 10.3403/02109602
Google Scholar
[18]
W.H. McAdams, Heat Transmission, 2nd ed., McGraw-Hill, (1942).
Google Scholar
[19]
Thermal insulation products for buildings – In-situ formed loose fill cellulose (LFCI) products–Part 1: Specification for the products before installation.
DOI: 10.3403/30258118u
Google Scholar
[20]
Mohammad S. Al-Homoud, Performance characteristics and practical applications of commonbuilding thermal insulation materials, Building and Environment 40 (3), 2005, 353–366.
DOI: 10.1016/j.buildenv.2004.05.013
Google Scholar
[21]
ASTM Standard C 168-97. Terminology relating to thermal insulating materials, (1997).
Google Scholar
[22]
B.M. Suleiman, J. Larfeldt, B. Leckner, M. Gustavsson, Thermal conductivity and diffusivity of wood, Wood Science and Technology 33, 1999, 465–473.
DOI: 10.1007/s002260050130
Google Scholar