[1]
Weizsаcker, E., Karlson, H., Smith, M. Faktor, 5. Formula ustojchivogo rosta [Factor 5 Formula for sustainable growth]. Moscow: AST-Press Kniga, 2013. 368 p. (rus)
Google Scholar
[2]
Kornienko, S.V., Popova, E.D. «Green» construction in Russia and other countries Construction of Unique Buildings and Structures. 2017. 55(4). Pp. 68–83. (rus)
Google Scholar
[3]
Golovnev, S.G. Sovremennye stroitel'nye tekhnologii: Monografiya [Modern Construction Technologies: monograph]. Chelyabinsk: South Ural State University Publishing Center, 2010. 268 р. (rus)
Google Scholar
[4]
Rabinovich, F.N. Kompozity na osnove dispersno armirovannyh betonov. Voprosy teorii i proektirovaniya, tekhnologiya, konstrukcii: Monografiya [Composites based on disperse reinforced concretes. Questions of theory and design, technology, constructions: Monograph]. Moscow, Publishing house ASV, 2004. 560 p. (rus)
Google Scholar
[5]
Kiyanets, A.V. Technological Parameters of Magnesia Mortars. ICIE 2017 Procedia Engineering. 2017. Vol. 206. Pp. 826–830.
DOI: 10.1016/j.proeng.2017.10.558
Google Scholar
[6]
Rudnov, V., Belyakov, V., Moskovsky, S. Properties and Design Characteristics of the Fiber Concrete. ICIE 2016 Procedia Engineering. 2016. Vol. 150. Pp. 1536–1540.
DOI: 10.1016/j.proeng.2016.07.107
Google Scholar
[7]
Klyuev, S.V., Klyuev, A.V., Abakarov, A.D., Shorstova, E.S., Gafarova, N.G. The effect of particulate reinforcement on strength and deformation characteristics of fine-grained concrete. Magazine of Civil Engineering. 2017. 75(7). Pp. 66–75
Google Scholar
[8]
Nizina, T.A., Balykov, A.S., Volodin, V.V., Korovkin, D.I. Fiber fine-grained concretes with polyfunctional modifying additive. Magazine of Civil Engineering. 2017. 72(4). Pp. 73–83.
DOI: 10.22184/1993-8578.2017.78.7.82.91
Google Scholar
[9]
Nikolenko, S.D., Sushko, E.A., Sazonova, S.A., Odnolko, A.A., Manokhin, V.Ya. Behaviour of concrete with a disperse reinforcement under dynamic loads. Magazine of Civil Engineering. 2017. 75(7). Pp. 3–14.
Google Scholar
[10]
Pikus, G.A., Manzhosov, I.V Pressure of Fiber Reinforced Concrete Mixtures on Vertical Formwork Panels. ICIE 2017 Procedia Engineering. 2017. Vol. 206. Pp. 836–841.
DOI: 10.1016/j.proeng.2017.10.560
Google Scholar
[11]
Malik, N., Kumar, P., Shrivastava, S., Ghosh, S.B. An overview on PET waste recycling for application in packaging. International Journal of Plastics Technology. 2017. Vol. 1. No. 1. Pp. 156–165.
DOI: 10.1007/s12588-016-9164-1
Google Scholar
[12]
Sharma, R., Bansal, P.P. Use of different forms of waste plastic in concrete. Journal of Cleaner Production. 2016. Vol. 112. Pp. 473–482.
DOI: 10.1016/j.jclepro.2015.08.042
Google Scholar
[13]
Ochi, T., Okubo, S., Fukui, K. Development of recycled PET fiber and its applications as concrete-reinforcing fiber. Cement and Concrete Composites. 2007. Vol. 29. Pp. 448–455.
DOI: 10.1016/j.cemconcomp.2007.02.002
Google Scholar
[14]
Borg, R.P., Baldacchino, O., Ferrara, L. Early age performance and mechanical characteristics of recycled PET fibre reinforced concrete. Construction and Building Materials. 2016. Vol. 108. Pp. 29–47.
DOI: 10.1016/j.conbuildmat.2016.01.029
Google Scholar
[15]
Saikia, N., De Brito, J. Waste Polyethylene Terephthalate as an Aggregate in Concrete. Materials Research. 2013. Vol. 16. No. 2. Pp. 341–350.
DOI: 10.1590/s1516-14392013005000017
Google Scholar
[16]
Irwan, J.M., Asyraf, R.M., Othman, N., Koh, H.B., Annas, M.M.K., Faisal, S.K. The mechanical properties of PET fiber reinforced concrete from recycled bottle wastes. Advanced Materials Research. 2013. Vol. 795. Pp. 347–351.
DOI: 10.4028/www.scientific.net/amr.795.347
Google Scholar
[17]
Iraqi Organization Standardization and Quality Control, No. 5, "Standard Specifications for Portland Cement", Baghdad, Iraq (2019).
Google Scholar
[18]
American Concrete Institute Committee ACI 211.3R, Guide for Selecting Proportions for No-Slump Concrete.
Google Scholar
[19]
B.S.: 1881: Part 116, "Method of testing hardened concrete for other strength", British Standard Institution, London, United Kingdom (1983).
Google Scholar
[20]
ASTM C78 2015 "Standard Specifications for Flexural Strength of Concrete Using Simple Beam with Third-Point Loading", American Society for Testing and Materials, Philadelphia, United States (2015).
Google Scholar
[21]
ASTM C1435 "Standard Practice for Molding Roller-Compacted Concrete in Cylinder Molds Using a Vibrating Hammer", American Society for Testing and Materials, Philadelphia, United States (2014).
DOI: 10.1520/c1435_c1435m
Google Scholar
[22]
ASTM C1170 "Standard Test Method for Determining Consistency and Density of Roller-Compacted Concrete Using a Vibrating table", American Society for Testing and Materials, Philadelphia, United States (2014).
DOI: 10.1520/c1170_c1170m-14
Google Scholar
[23]
Topcu, I.B. and Canbaz, M., "Effect of different fibers on the mechanical properties of concrete containing fly ash", Construction and Building Materials, vol. 21, no. 7, p.1486–1491, 2007.
DOI: 10.1016/j.conbuildmat.2006.06.026
Google Scholar
[24]
Banthia, N., and Sappakittipakorn, M., "Toughness enhancement in steel fiber reinforced concrete through fiber hybridization", Cement and Concrete Research, vol. 37, no. 9, pp.1366-1372, 2007.
DOI: 10.1016/j.cemconres.2007.05.005
Google Scholar