Review of the Physical Properties of CLC Lightweight Concrete Using the Addition of Red Sand from Labuhan Batu Selatan

Article Preview

Abstract:

This research aims to review the physical properties of Lightweight Cellular Concrete (CLC) bricks with the addition of Labuhan Batu Selatan red sand. CLC bricks have the advantage of being lightweight and larger in size, which can expedite the construction process. CLC bricks are made by adding air bubbles/foaming agents to the mortar mix as an expander to produce lightweight bricks with a lower material composition. It is crucial for the air bubbles to maintain their shape during the mortar curing process without causing any chemical reactions. In this study, lightweight bricks were made by experimenting with various combinations of red sand and river sand, with variations of 0% red sand and 100% red sand, using the Cellular Lightweight Concrete (CLC) method. The research method employed was experimental, testing the physical properties of CLC lightweight bricks, specifically density and compressive strength, in accordance with the SNI 03-6825-2002 standard. As a result, with the addition of red sand in the production of CLC lightweight bricks, the density falls within the lightweight brick category, but it does not significantly improve the compressive strength of the lightweight bricks. This is because the CaCO3 (calcium carbonate) content in the CLC lightweight brick mix has the highest intensity, causing the bricks to become brittle. Therefore, this research suggests paying more attention to the mixing and blending processes of the materials to achieve a more uniform distribution.

You might also be interested in these eBooks

Info:

Pages:

19-24

Citation:

Online since:

February 2024

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2024 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Dedi, B. Setiawan, & Rifqi, A. aulia. (2019). Perilaku Mekanik Beton Ringan Styrofoam. Bangun Rekaprima, 05, 29–40.

DOI: 10.32497/bangunrekaprima.v5i1.1407

Google Scholar

[2] Fadhlurrahman Hazim, M., Handayani, K.D., & Risdianto, Y. (2016). Studi penggunaan catalyst, monomer, dan kapur sebagai material penyusun beton ringan seluler. Rekayasa Teknik Sipil, 3(3/REKAT/16), 138–149.

DOI: 10.26740/proteksi.v4n1.p14-20

Google Scholar

[3] Harahap, M.H., & Putri, A. E. (2020). Effect of variations in the composition and size of red sand grains on the quality of K-225 concrete. Journal of Metals, Materials and Minerals, 30(4), 79– 83

DOI: 10.55713/jmmm.v30i4.765

Google Scholar

[4] Harahap, M.H., Ritonga, W., & Adelia, N. (2023). Characteristics of Concrete With Red Sand Mixture 80 Mesh Grain Size After Combustion. Jurnal Penelitian Pendidikan IPA, 9(8), 6540– 6547

DOI: 10.29303/jppipa.v9i8.3107

Google Scholar

[5] Harahap, M. H., Ritonga, W., Irfandi, I., & Zubir, M. (2022). Optimization of Red Sand Particle Size and Composition in Mixture with Ordinary Sand to Enhance Concrete Quality. Civil and Environmental Engineering, 0(0), 424–429

DOI: 10.2478/cee-2022-0039

Google Scholar

[6] Harahap, V., & Harahap, M.H. (2013). Pengaruh Karakteristik Pasir Merah Labuhan Batu Selatan Terhadap Sifat Mekanik (Uji Sem, Difraksi Sinar X, Uji Impak) Dari Beton. Jurnal Einstein, 1(2).

DOI: 10.24114/einstein.v1i2.5061

Google Scholar

[7] Hardiyanti, A. D., Abdullah, Hayati, Y., & Abbas, I. (2022). Sifat Mekanis Beton Busa dengan Serat. Journal of The Civil Engineering Student, 4(3), 274–280.

DOI: 10.24815/journalces.v4i3.18714

Google Scholar

[8] Pah, J. J. S., Sehandi, K., & Bella, R. A. (2019). Pengaruh Variasi Ukuran Butiran Agregat Terhadap Kuat Tekan Bata Ringan Jenis Clc. Jurnal Teknik Sipil, VIII(1), 80–90.

DOI: 10.55404/jos-mrk.2020.01.03.157-163

Google Scholar

[9] Pradana, E. C., & Rosyad, F. (2021). Perbandingan Pelaksaan Dinding Precast Dengan Dinding Konvensional Ditinjau Dari Segi Waktu, Biaya Dan Kualitas. Bina Darma Conference on Engineering Science, 3(2), 896–903. http://conference.binadarma.ac.id/ index.php/BDCES

DOI: 10.21009/jmenara.v7i2.7953

Google Scholar

[10] Pujiono, A., Riyanto, D., Pujianto, A., & Soebandono, B. (2013). Pengaruh Faktor Air Semen terhadap Kuat Tekan Beton dengan Agregat Batu Apung (The Effect of Water-Cement Ratio on the Compressive Strength of Concrete with Pumice Aggregate). JURNAL ILMIAH SEMESTA TEKNIKA, 16(2), 184–190.

DOI: 10.18196/st.v16i2.4921

Google Scholar

[11] Putra, R.S., Suryanita, R., & Maizir, H. (2021). Analisis Kuat Tekan Dan Workability Bata Ringan Cellular Lightweight Concrete. Journal of Infrastructure and Civil Engineering, 02(01), 34– 46.

DOI: 10.35583/jice.v2i01.13

Google Scholar

[12] Setyowati, M. (2019). Analisis Penambahan Foam Agent Pada Bata Ringan Pegunungan Kendeng Kabupaten Rembang.

Google Scholar

[13] Simanjuntak, P. (2022). Pengembangan Teknologi Beton Kinerja Tinggi Yang Berkelanjutan. Jurnal Rekayasa Teknik Sipil Dan Lingkungan, 4(1), 8–14.

Google Scholar

[14] Sitindaon, D., & Harahap, M. H. (2014). Pengaruh Penambahan Styrofoam Pada Pembuatan Beton Ringan Menggunakan Pasir Merah Labuhan Batu Selatan. Jurnal Einstein, 2(3), 14–19.

DOI: 10.24114/einstein.v5i1.7229

Google Scholar

[15] Van Gobel, F. M. (2019). Nilai Kuat Tekan Beton Pada Slump Beton Tertentu. RADIAL – Jurnal Peradaban SaIns, Rekayasa Dan TeknoLogi Sekolah Tinggi Teknik (STITEK) Bina Taruna Gorontalo, 5(1), 22–33.

DOI: 10.37971/radial.v9i2.237

Google Scholar