Analysis DEM and Geological Observation Data for Study of the Potential Landslide National Street for Jantho - Lamno

Article Preview

Abstract:

Landslide is a natural disaster in Indonesia, especially in the Aceh province, with its geological complex, high rainfall, and topography. The high-intensity landslides have occurred in Jantho and Lamno, located in the Northern part of Aceh, with high development costs of road infrastructure. Therefore, it is necessary to map the potential of landslides along the Jantho – Lamno road as disaster mitigation in the future. The research uses a digital elevation model (DEM) that applies slope, aspect, hill shade, curvature, elevation and geological observation to study the landslide probability. The DEM analysis shows the distribution of terrain with varying elevations of 300 – 1,200 m.a.s.l and slope characteristics with 10 – 50 degrees variations. Apart from that, curvature and aspect analysis describe the direction of slope reduction, which is more dominant towards the side of public infrastructure. Analysis of the four data distributions shows that the south side area has a large landslide potential. On the other hand, slope data slices at four locations could interpret landslide potential well. Based on data processing, we conclude that comparing DEM and geological observations is considered effective as a fast and economical method of mapping landslide probability, especially in tropical areas and high topography that is difficult to access.

You might also be interested in these eBooks

Info:

Pages:

55-63

Citation:

Online since:

February 2024

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2024 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S. D. Pardeshi, S. E. Autade, and S. S. Pardeshi, Landslide Hazard Assessment: Recent Trends and Techniques, Springerplus 2, 1 (2013).

DOI: 10.1186/2193-1801-2-523

Google Scholar

[2] M. Alvioli, M. Melillo, F. Guzzetti, M. Rossi, E. Palazzi, J. von Hardenberg, M. T. Brunetti, and S. Peruccacci, Implications of Climate Change on Landslide Hazard in Central Italy, Sci. Total Environ. 630, 1528 (2018).

DOI: 10.1016/j.scitotenv.2018.02.315

Google Scholar

[3] L. Selmi, T. S. Canesin, R. Gauci, P. Pereira, and P. Coratza, Degradation Risk Assessment: Understanding the Impacts of Climate Change on Geoheritage, Sustainability 14, 4262 (2022).

DOI: 10.3390/su14074262

Google Scholar

[4] J. Zhou, P. Cui, and X. Yang, Dynamic Process Analysis for the Initiation and Movement of the Donghekou Landslide-Debris Flow Triggered by the Wenchuan Earthquake, J. Asian Earth Sci. 76, 70 (2013).

DOI: 10.1016/j.jseaes.2013.08.007

Google Scholar

[5] W. J. Burns, N. C. Calhoun, J. J. Franczyk, E. J. Koss, and M. G. Bordal, Estimating Losses from Landslides in Oregon, Landslides Putt. Exp. Knowl. Emerg. Technol. into Pract. Assoc. Environ. Eng. Geol. (AEG), Spec. Publ. 27, 473 (2017).

Google Scholar

[6] R. Huang and X. Fan, The Landslide Story, Nat. Geosci. 6, 325 (2013).

Google Scholar

[7] D. B. Kirschbaum, R. Adler, Y. Hong, S. Hill, and A. Lerner-Lam, A Global Landslide Catalog for Hazard Applications: Method, Results, and Limitations, Nat. Hazards 52, 561 (2010).

DOI: 10.1007/s11069-009-9401-4

Google Scholar

[8] F. Guzzetti, A. Carrara, M. Cardinali, and P. Reichenbach, Landslide Hazard Evaluation: A Review of Current Techniques and Their Application in a Multi-Scale Study, Central Italy, Geomorphology 31, 181 (1999).

DOI: 10.1016/s0169-555x(99)00078-1

Google Scholar

[9] T. Hamza and T. K. Raghuvanshi, GIS Based Landslide Hazard Evaluation and Zonation–A Case from Jeldu District, Central Ethiopia, J. King Saud Univ. 29, 151 (2017).

DOI: 10.1016/j.jksus.2016.05.002

Google Scholar

[10] B. Pradhan and A. M. Youssef, Manifestation of Remote Sensing Data and GIS on Landslide Hazard Analysis Using Spatial-Based Statistical Models, Arab. J. Geosci. 3, 319 (2010).

DOI: 10.1007/s12517-009-0089-2

Google Scholar

[11] M. Yanis, N. Zaini, I. Novari, F. Abdullah, B. G. Dewanto, M. Isa, M. Marwan, M. Zainal, and A. Abdurrahman, Monitoring of Heat Flux Energy in the Northernmost Part of Sumatra Volcano Using Landsat 8 and Meteorological Data, Int. J. Renew. Energy Dev. 0, (2022).

DOI: 10.14710/ijred.2023.47048

Google Scholar

[12] B. G. Dewanto, R. Priadi, L. S. Heliani, A. S. Natul, M. Yanis, I. Suhendro, and A. M. Julius, The 2022 Mw 6.1 Pasaman Barat, Indonesia Earthquake, Confirmed the Existence of the Talamau Segment Fault Based on Teleseismic and Satellite Gravity Data, Quaternary 5, 45 (2022).

DOI: 10.3390/quat5040045

Google Scholar

[13] S. Hammami, L. Zouhri, D. Souissi, A. Souei, A. Zghibi, A. Marzougui, and M. Dlala, Application of the GIS Based Multi-Criteria Decision Analysis and Analytical Hierarchy Process (AHP) in the Flood Susceptibility Mapping (Tunisia), Arab. J. Geosci. 12, 1 (2019).

DOI: 10.1007/s12517-019-4754-9

Google Scholar

[14] M. Zainal, B. Munir, and Marwan, The Electrical Resistivity Tomography Technique for Landslide Characterization in Blangkejeren Aceh, in Journal of Physics: Conference Series (2021).

DOI: 10.1088/1742-6596/1825/1/012022

Google Scholar

[15] M. Zainal, B. Munir, M. Marwan, M. Yanis, and A. Muhni, Characterization of Landslide Geometry Using Seismic Refraction Tomography in the GayoLues, Indonesia, J. Phys. Its Appl. 3, 148 (2021).

DOI: 10.14710/jpa.v3i2.10601

Google Scholar

[16] S. Lee, Application of Likelihood Ratio and Logistic Regression Models to Landslide Susceptibility Mapping Using GIS, Environ. Manage. 34, 223 (2004).

DOI: 10.1007/s00267-003-0077-3

Google Scholar

[17] M. P. Kakavas and K. G. Nikolakopoulos, Digital Elevation Models of Rockfalls and Landslides: A Review and Meta-Analysis, Geosciences 11, 256 (2021).

DOI: 10.3390/geosciences11060256

Google Scholar

[18] M. R. Mansouri Daneshvar, Landslide Susceptibility Zonation Using Analytical Hierarchy Process and GIS for the Bojnurd Region, Northeast of Iran, Landslides 11, 1079 (2014).

DOI: 10.1007/s10346-013-0458-5

Google Scholar

[19] J. D. Bennett, N. R. Bridge, A. Djunuddin, S. A. Ghazali, D. H. Jeffery, W. Keats, N. M. S. Rock, S. J. Thompson, and R. Whandoyo, The Geology of the Banda Aceh Quadrangle, Sumatra-Geological Research and Development Centre, Bandung, Explan. Note 19 (1981).

Google Scholar

[20] Y. Yin, W. Zheng, Y. Liu, J. Zhang, and X. Li, Integration of GPS with InSAR to Monitoring of the Jiaju Landslide in Sichuan, China, Landslides 7, 359 (2010).

DOI: 10.1007/s10346-010-0225-9

Google Scholar

[21] B. T. Pham, D. Tien Bui, H. R. Pourghasemi, P. Indra, and M. B. Dholakia, Landslide Susceptibility Assesssment in the Uttarakhand Area (India) Using GIS: A Comparison Study of Prediction Capability of Naïve Bayes, Multilayer Perceptron Neural Networks, and Functional Trees Methods, Theor. Appl. Climatol. 128, 255 (2017).

DOI: 10.1007/s00704-015-1702-9

Google Scholar

[22] Y. L. Ekinci, M. Türkeş, A. Demirci, and A. E. Erginal, Shallow and Deep-Seated Regolith Slides on Deforested Slopes in Çanakkale, NW Turkey, Geomorphology 201, 70 (2013).

DOI: 10.1016/j.geomorph.2013.06.008

Google Scholar

[23] L. Claessens, G. B. M. Heuvelink, J. M. Schoorl, and A. Veldkamp, DEM Resolution Effects on Shallow Landslide Hazard and Soil Redistribution Modelling, Earth Surf. Process. Landforms J. Br. Geomorphol. Res. Gr. 30, 461 (2005).

DOI: 10.1002/esp.1155

Google Scholar

[24] E. A. C. Abella and C. J. Van Westen, Qualitative Landslide Susceptibility Assessment by Multicriteria Analysis: A Case Study from San Antonio Del Sur, Guantánamo, Cuba, Geomorphology 94, 453 (2008).

DOI: 10.1016/j.geomorph.2006.10.038

Google Scholar

[25] Y. Bamutaze, Morphometric Conditions Underpinning the Spatial and Temporal Dynamics of Landslide Hazards on the Volcanics of Mt. Elgon, Eastern Uganda, in Emerging Voices in Natural Hazards Research (Elsevier, 2019), p.57–81.

DOI: 10.1016/b978-0-12-815821-0.00010-2

Google Scholar

[26] T. H. Mezughi, J. M. Akhir, A. G. Rafek, and I. Abdullah, Landslide Susceptibility Assessment Using Frequency Ratio Model Applied to an Area along the EW Highway (Gerik-Jeli), Am. J. Environ. Sci. 7, 43 (2011).

DOI: 10.3844/ajessp.2011.43.50

Google Scholar

[27] F. C. Dai and C. F. Lee, Landslide Characteristics and Slope Instability Modeling Using GIS, Lantau Island, Hong Kong, Geomorphology 42, 213 (2002).

DOI: 10.1016/s0169-555x(01)00087-3

Google Scholar

[28] J. Zhuang, J. Peng, J. Iqbal, T. Liu, N. Liu, Y. Li, and P. MA, Identification of Landslide Spatial Distribution and Susceptibility Assessment in Relation to Topography in the Xi'an Region, Shaanxi Province, China, Front Earth Sci 9, (2015).

DOI: 10.1007/s11707-014-0474-3

Google Scholar

[29] R. C. De Rose, Slope Control on the Frequency Distribution of Shallow Landslides and Associated Soil Properties, North Island, New Zealand, Earth Surf. Process. Landforms 38, 356 (2013).

DOI: 10.1002/esp.3283

Google Scholar