[1]
Kabashi, N., Krasniqi, C., Hadri, R., & Sadikaj, A. (2018). Effect of fiber reinforced concrete and behavior in rigid pavements. Int. J. Struct. Civ. Eng. Res, 7(1), 29-33.
DOI: 10.18178/ijscer.7.1.29-33
Google Scholar
[2]
Yuvaraj, B., & Irshad, M. (2015). Effect of Dynamic Load on Rigid Pavement. Int J Eng Res, 4(03), 287-90.
Google Scholar
[3]
Liu, K., Zhang, X., Wang, Y., Han, S., Luo, Z., Hao, J., & Zhang, J. (2023). Laboratory investigation on early-age shrinkage cracking behavior of partially continuous reinforced concrete pavement. Construction and Building Materials, 377, 131125.
DOI: 10.1016/j.conbuildmat.2023.131125
Google Scholar
[4]
Ali, M., Liu, A., Sou, H., & Chouw, N. (2010, March). Effect of fibre content on dynamic properties of coir fibre reinforced concrete beams. In Proceedings of NZSEE Conference (pp.1-8).
Google Scholar
[5]
Wang, Y., & Long, W. (2021). Complete stress–strain curves for pine needle fiber reinforced concrete under compression. Construction and Building Materials, 302, 124134.
DOI: 10.1016/j.conbuildmat.2021.124134
Google Scholar
[6]
Banthia, N., & Gupta, R. (2004). Hybrid fiber reinforced concrete (HyFRC): fiber synergy in high strength matrices. Materials and structures, 37, 707-716.
DOI: 10.1617/14095
Google Scholar
[7]
Daniel, J. I., Ahmad, S. H., Arockiasamy, M., Ball, H. P., Batson, G. B., Criswell, M. E., & Zollo, R. F. (2002). State-of-the-art report on fiber reinforced concrete reported by ACI Committee 544. ACI J, 96, 1-66.
Google Scholar
[8]
Balasubramanian, M., Senthilselvan, S., & Sabarish, K. V. (2016). Experimental investigation on strength and durability properties of sisal fiber reinforced concrete. Int. J. Chem. Sci, 14, 241-246.
Google Scholar
[9]
Ravikumar, C.S., Ramasamy, V., & Thandavamoorthy, T.S. (2015). Effect of fibers in concrete composites. International Journal of Applied Engineering Research, 10(1), 419-430.
Google Scholar
[10]
Rathore, H. (2013). Steel Fiber Reinforced Concrete: An Analysis. The Inquisitive Meridian., 1(2), 1-16.
Google Scholar
[11]
Lofgren, I. (2005). Fibre-reinforced Concrete for Industrial Construction–a fracture mechanics approach to material testing and structural analysis. Chalmers Tekniska Hogskola (Sweden).
Google Scholar
[12]
Affan, M., & Ali, M. (2022). Experimental investigation on mechanical properties of jute fiber reinforced concrete under freeze-thaw conditions for pavement applications. Construction and Building Materials, 323, 126599.
DOI: 10.1016/j.conbuildmat.2022.126599
Google Scholar
[13]
Bhalchandra, S.A., & Bajirao, P.A. (2012). Performance of steel fiber reinforced self compacting concrete. International Journal of Computational Engineering Research (ijceronline. com) Vol, 2, 1042-1046.
Google Scholar
[14]
Hayat, A., Khan, H., Haq, R. U., & Ali, M. Use of Pine-Needle Reinforced Composites in Kashmir, Pakistan–A Critical Review.
Google Scholar
[15]
Ali, M., Liu, A., Sou, H., & Chouw, N. (2012). Mechanical and dynamic properties of coconut fibre reinforced concrete. Construction and Building Materials, 30, 814-825.
DOI: 10.1016/j.conbuildmat.2011.12.068
Google Scholar
[16]
Kos, Ž., Kroviakov, S., Mishutin, A., & Poltorapavlov, A. (2023). An Experimental Study on the Properties of Concrete and Fiber-Reinforced Concrete in Rigid Pavements. Materials, 16(17), 5886.
DOI: 10.3390/ma16175886
Google Scholar
[17]
Arooj, K., & Ali, M. (2021). Mechanical, Dynamic and Absorption Properties of Hybrid Fiber Reinforced Concrete for Rigid Pavements Application. Masters in Civil Engineering, Capital University of Science & technology.
Google Scholar
[18]
Farooqi, M. U., & Ali, M. (2018, September). Effect of fiber content on compressive strength of wheat straw reinforced concrete for pavement applications. In IOP Conference Series: Materials Science and Engineering (Vol. 422, No. 1, p.012014). IOP Publishing.
DOI: 10.1088/1757-899x/422/1/012014
Google Scholar
[19]
Farooqi, M. U., & Ali, M. (2018). Effect of Fiber Content on Splitting-Tensile Strength of Wheat Straw Reinforced Concrete for Pavement Applications. Key Engineering Materials, 765, 349-354.
DOI: 10.4028/www.scientific.net/kem.765.349
Google Scholar
[20]
Shakir, H. M., Al-Tameemi, A. F., & Al-Azzawi, A. A. (2021, May). A review on hybrid fiber reinforced concrete pavements technology. In Journal of Physics: Conference Series (Vol. 1895, No. 1, p.012053). IOP Publishing.
DOI: 10.1088/1742-6596/1895/1/012053
Google Scholar
[21]
Pakravan, H. R., Latifi, M., & Jamshidi, M. (2017). Hybrid short fiber reinforcement system in concrete: A review. Construction and building materials, 142, 280-294.
DOI: 10.1016/j.conbuildmat.2017.03.059
Google Scholar
[22]
Irfan, M. (2023). Partial Replacement of Cement with Eggshell and Marble Dust Powder in Pine-Needle Fiber Reinforced Concrete (Doctoral dissertation, CAPITAL UNIVERSITY).
Google Scholar
[23]
Huang, L., Xu, L., Chi, Y., & Xu, H. (2015). Experimental investigation on the seismic performance of steel–polypropylene hybrid fiber reinforced concrete columns. Construction and Building Materials, 87, 16-27.
DOI: 10.1016/j.conbuildmat.2015.03.073
Google Scholar
[24]
Jan, A., Shah, J., Khan, F. U., & Rahman, A. U. (2006). Short Communication Investigation of Pine Needles for Pulp/Paper Industry. Biological Sciences-PJSIR, 49(6), 407-409.
Google Scholar