[1]
H. M. Somasekharaiah, M. S. Y. B, and M. B. S, "A Comparative Study on Lateral Force Resisting System For Seismic Loads," p.1138–1144, 2016.
Google Scholar
[2]
Q. Liu, W. Zhang, M. W. Bhatt, and A. Kumar, "No Title," Nonlinear Eng., vol. 10, no. 1, p.574–582, 2021, doi:.
DOI: 10.1515/nleng-2021-0048
Google Scholar
[3]
S. Fenves and T. Norabhoompipat, "POTENTIALS FOR ARTIFICIAL INTELLIGENCE APPLICATIONS IN STRUCTURAL ENGINEERING DESIGN AND DETAILING.," [No source Inf. available].
Google Scholar
[4]
J. Bennett, L. Creary, and R. Englemore, "James Bennett, Lewis Creary, Robert Englemore and Robert klosh COMPUTER S C I E N C E D E P A R T M E N T School of Humanities and Sciences STANFORD UNIVERSITY," no. September, 1978.
Google Scholar
[5]
R. Sun, "tngineering," vol. 5, 1990.
Google Scholar
[6]
M. C. Porcu, C. Bosu, and I. Gavrić, "Non-linear dynamic analysis to assess the seismic performance of cross-laminated timber structures," J. Build. Eng., vol. 19, p.480–493, 2018.
DOI: 10.1016/j.jobe.2018.06.008
Google Scholar
[7]
Y. Xie, M. Eeri, M. E. Sichani, J. E. Padgett, M. Eeri, and M. Eeri, "The promise of implementing machine learning in earthquake engineering : A state-of-the-art review," 2020.
DOI: 10.1177/8755293020919419
Google Scholar
[8]
A. Alam, "Define machine learning and describe the main types of machine learning," no. August, 2023.
Google Scholar
[9]
D. H. Maulud and A. M. Abdulazeez, "A Review on Linear Regression Comprehensive in Machine Learning," vol. 01, no. 04, p.140–147, 2020.
DOI: 10.38094/jastt1457
Google Scholar
[10]
O. Karayel and G. Özay, "Seismic Performance Assessment of Reinforced Concrete Building Stock Using Artificial Neural Network and Linear Regression Analysis BT - Sustainable Civil Engineering at the Beginning of Third Millennium," 2024, p.374–386.
DOI: 10.1007/978-981-97-1781-1_35
Google Scholar
[11]
M. Mondol, "Analysis and Prediction of Earthquakes using different Machine Learning techniques," p.2–10, 2021.
Google Scholar
[12]
S. Kwag, D. Hahm, M. Kim, and S. Eem, "Development of a Probabilistic Seismic Performance Assessment Model of Slope Using Machine Learning Methods," 2020.
DOI: 10.3390/su12083269
Google Scholar
[13]
B. U. Gokkaya, J. W. Baker, and G. G. Deierlein, "Estimation and impacts of model parameter correlation for seismic performance assessment of reinforced concrete structures," Struct. Saf., vol. 69, p.68–78, 2017.
DOI: 10.1016/j.strusafe.2017.07.005
Google Scholar
[14]
Z. Jabari, S. Mohammad, I. Khodakarami, and F. Behnamfar, "Development of seismic fragility curves for RC / MR frames using machine learning methods," Asian J. Civ. Eng., vol. 24, no. 3, p.823–836, 2023.
DOI: 10.1007/s42107-022-00533-w
Google Scholar
[15]
H. D. Nguyen, Y.-J. Lee, J. M. LaFave, and M. Shin, "Seismic fragility analysis of steel moment frames using machine learning models," Eng. Appl. Artif. Intell., vol. 126, p.106976, 2023.
DOI: 10.1016/j.engappai.2023.106976
Google Scholar
[16]
H. Dabiri, A. Faramarzi, A. Dall'Asta, E. Tondi, and F. Micozzi, "A machine learning-based analysis for predicting fragility curve parameters of buildings," J. Build. Eng., vol. 62, p.105367, 2022.
DOI: 10.1016/j.jobe.2022.105367
Google Scholar
[17]
A. Cutler, D. R. Cutler, and J. R. Stevens, "Random Forests," no. February 2014, 2011.
DOI: 10.1007/978-1-4419-9326-7
Google Scholar
[18]
J. Yang, H. Zhuang, G. Zhang, B. Tang, and C. Xu, "Seismic performance and fragility of two-story and three-span underground structures using a random forest model and a new damage description method," Tunn. Undergr. Sp. Technol., vol. 135, p.104980, 2023.
DOI: 10.1016/j.tust.2022.104980
Google Scholar
[19]
F. Kazemi, N. Asgarkhani, and R. Jankowski, "Machine learning-based seismic fragility and seismic vulnerability assessment of reinforced concrete structures," Soil Dyn. Earthq. Eng., vol. 166, p.107761, 2023.
DOI: 10.1016/j.soildyn.2023.107761
Google Scholar
[20]
R. Segura, J. E. Padgett, A. M. Asce, P. Paultre, and M. Asce, "Metamodel-Based Seismic Fragility Analysis of Concrete Gravity Dams," vol. 146, no. 7, p.1–17, 2020.
DOI: 10.1061/(ASCE)ST.1943-541X.0002629
Google Scholar
[21]
S. Mangalathu, "Stripe ‐ based fragility analysis of multispan concrete bridge classes using machine learning techniques," no. April, p.1–18, 2019.
DOI: 10.1002/eqe.3183
Google Scholar
[22]
K. Taunk, S. De, S. Verma, and A. Swetapadma, "MACHINE LEARNING CLASSIFICATION WITH K-NEAREST NEIGHBOURS," no. January 2021, 2019.
DOI: 10.1109/ICCS45141.2019.9065747
Google Scholar
[23]
Y. Shi, K. Yang, Z. Yang, and Y. B. T.-M. E. A. I. Zhou, Eds., "Contents," Academic Press, 2022, pp. v–ix.
DOI: 10.1016/B978-0-12-823817-2.00004-8
Google Scholar
[24]
L. Y. Hu, M. W. Huang, S. W. Ke, and C. F. Tsai, "The distance function effect on k ‑ nearest neighbor classification for medical datasets," 2016.
DOI: 10.1186/s40064-016-2941-7
Google Scholar
[25]
V. Calofir, R. Munteanu, M. Simoiu, and K. Lemnaru, "Results in Engineering Innovative approach to estimate structural damage using linear regression and K-nearest neighbors machine learning algorithms," Results Eng., vol. 22, no. April, p.102250, 2024.
DOI: 10.1016/j.rineng.2024.102250
Google Scholar
[26]
N. Saleem, S. Mangalathu, B. Ahmed, and J.-S. Jeon, "Machine learning-based peak ground acceleration models for structural risk assessment using spatial data analysis," Earthq. Eng. Struct. Dyn., vol. 53, no. 1, p.152–178, Jan. 2024.
DOI: 10.1002/eqe.4021
Google Scholar
[27]
S. Mangalathu, H. Sun, C. C. Nweke, Z. Yi, and H. V Burton, "Classifying earthquake damage to buildings using machine learning," Earthq. Spectra, vol. 36, no. 1, p.183–208, Jan. 2020.
DOI: 10.1177/8755293019878137
Google Scholar
[28]
A. Roy and S. Chakraborty, "Support vector machine in structural reliability analysis: A review," Reliab. Eng. Syst. Saf., vol. 233, p.109126, 2023.
DOI: 10.1016/j.ress.2023.109126
Google Scholar
[29]
R. Sainct, C. Feau, J.-M. Martinez, and J. Garnier, "Efficient methodology for seismic fragility curves estimation by active learning on Support Vector Machines," Struct. Saf., vol. 86, p.101972, 2020.
DOI: 10.1016/j.strusafe.2020.101972
Google Scholar
[30]
S. N. Mahmoudi and L. Chouinard, "Seismic fragility assessment of highway bridges using support vector machines," Bull. Earthq. Eng., vol. 14, no. 6, p.1571–1587, 2016.
DOI: 10.1007/s10518-016-9894-7
Google Scholar
[31]
M. S. B. Maind, "Research Paper on Basic of Artificial Neural Network," no. January, p.96–100, 2014.
Google Scholar
[32]
E. Binali, "Activation functions used in artificial neural networks," no. October, 2023.
Google Scholar
[33]
Z. Liu and Z. Zhang, "Artificial Neural Network based method for seismic fragility analysis of steel frames," KSCE J. Civ. Eng., vol. 22, May 2017.
DOI: 10.1007/s12205-017-1329-8
Google Scholar
[34]
Z. Wang, N. Pedroni, I. Zentner, and E. Zio, "Seismic fragility analysis with artificial neural networks: Application to nuclear power plant equipment," Eng. Struct., vol. 162, p.213–225, 2018.
DOI: 10.1016/j.engstruct.2018.02.024
Google Scholar
[35]
G. Quinci, H. N. Phan, and F. Paolacci, On the Use of Artificial Neural Network Technique for Seismic Fragility Analysis of a Three-Dimensional Industrial Frame. 2022.
DOI: 10.1115/PVP2022-83874
Google Scholar
[36]
S. Hwang, S. Mangalathu, J. Shin, and J. Jeon, "Jo ur na l P re of," J. Build. Eng., p.101905, 2020.
DOI: 10.1016/j.jobe.2020.101905
Google Scholar
[37]
S. Bhatta and J. Dang, "Seismic damage prediction of RC buildings using machine learning," no. September 2022, p.3504–3527, 2023.
DOI: 10.1002/eqe.3907
Google Scholar
[38]
M. Noureldin, T. Ali, and J. Kim, "Machine learning-based seismic assessment of framed structures with soil-structure interaction," vol. 17, no. 2, p.205–223, 2023.
DOI: 10.1007/s11709-022-0909-y
Google Scholar
[39]
D. Asta, "University of Birmingham A machine learning-based analysis for predicting fragility curve parameters of buildings Fragility curves of buildings ; a critical review and a machine learning-based study," 2024.
DOI: 10.1016/j.jobe.2022.105367
Google Scholar
[40]
M. Ludian, "Seismic vulnerability assessment model of civil structure using machine learning algorithms : a case study of the 2014," Nat. Hazards, vol. 120, no. 7, p.6481–6508, 2024.
DOI: 10.1007/s11069-024-06465-9
Google Scholar
[41]
E. Nazarian, T. Taylor, T. Weifeng, and F. Ansari, "Machine-learning-based approach for post event assessment of damage in a turn-of-the-century building structure," J. Civ. Struct. Heal. Monit., vol. 8, no. 2, p.237–251, 2018.
DOI: 10.1007/s13349-018-0275-6
Google Scholar
[42]
J. Chen, H. Xiong, and C. E. Ventura, "Seismic reliability evaluation of a tall concrete-timber hybrid structural system," Struct. Des. Tall Spec. Build., vol. 31, no. 10, p. e1933, Jul. 2022.
DOI: 10.1002/tal.1933
Google Scholar
[43]
Z. Xin, D. Ke, H. Zhang, Y. Yu, and F. Liu, "Non-destructive evaluating the density and mechanical properties of ancient timber members based on machine learning approach," Constr. Build. Mater., vol. 341, p.127855, 2022.
DOI: 10.1016/j.conbuildmat.2022.127855
Google Scholar
[44]
Y. Xinzhe, L. Liujun, Z. Haibin, Z. Yanping, C. Genda, and D. Cihan, "Machine Learning-Based Seismic Damage Assessment of Residential Buildings Considering Multiple Earthquake and Structure Uncertainties," Nat. Hazards Rev., vol. 24, no. 3, p.4023024, Aug. 2023.
DOI: 10.1061/NHREFO.NHENG-1681
Google Scholar
[45]
K. Chawgien and E. Junda, "Interpretable machine learning models for the estimation of seismic drifts in CLT buildings," vol. 70, no. December 2022, 2023.
DOI: 10.1016/j.jobe.2023.106365
Google Scholar