Innovative Building Insulation Solutions: Combating Global Warming with Advanced and Eco-Friendly Technologies

Article Preview

Abstract:

Escalating greenhouse gas (GHG) emissions, with CO2 contributing approximately 76% of the total, are the primary drivers of global warming. The construction sector is a major contributor, currently responsible for about one-third of global energy consumption and associated emissions, with projections indicating a surge to 53% within the next decade due to accelerating urbanization and technological advancements. This paper delves into the transformative potential of advanced building insulation technologies to curtail CO2 emissions, drawing insights from cutting-edge research published in leading journals over the past decade. Initially, it explores the fundamental causes of global warming and the profound influence of the construction industry. The analysis then shifts to an in-depth exploration of innovative insulation materials, with a particular focus on the superior environmental performance of bio-based options. Finally, the study assesses the ecological impact, adaptability, and long-term sustainability of these materials, offering strategic recommendations for their integration into residential and commercial buildings to significantly enhance energy efficiency and reduce carbon footprints.

You might also be interested in these eBooks

Info:

Pages:

81-90

Citation:

Online since:

April 2025

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2025 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] L. Dong, Z. Huang, Some evidence and new insights for feedback loops of human-nature interactions from a holistic Earth perspective, J. Clean. Prod. 139667 (2023).

DOI: 10.1016/j.jclepro.2023.139667

Google Scholar

[2] F. Adedoyin, I. Ozturk, I. Abubakar, T. Kumeka, O. Folarin, F.V. Bekun, Structural breaks in CO2 emissions: Are they caused by climate change protests or other factors?, J. Environ. Manag. 266 (2020) 110628.

DOI: 10.1016/j.jenvman.2020.110628

Google Scholar

[3] M. Bilgili, S. Tumse, S. Nar, Comprehensive overview on the present state and evolution of global warming, climate change, greenhouse gasses, and renewable energy, Arab. J. Sci. Eng. 1-29 (2024).

DOI: 10.1007/s13369-024-09390-y

Google Scholar

[4] X. Zhang, N. Heeren, C. Bauer, P. Burgherr, R. McKenna, G. Habert, The impacts of future sectoral change on the greenhouse gas emissions of construction materials for Swiss residential buildings, Energy Build. 303 (2024) 113824.

DOI: 10.1016/j.enbuild.2023.113824

Google Scholar

[5] V.J. Reddy, M.F. Ghazali, S. Kumarasamy, Advancements in phase change materials for energy-efficient building construction: A comprehensive review, J. Energy Storage 81 (2024) 110494.

DOI: 10.1016/j.est.2024.110494

Google Scholar

[6] H. Ajabli, A. Zoubir, R. Elotmani, M. Louzazni, K. Kandoussi, A. Daya, Review on eco-friendly insulation material used for indoor comfort in building, Renew. Sustain. Energy Rev. 185 (2023) 113609.

DOI: 10.1016/j.rser.2023.113609

Google Scholar

[7] A.M. Omer, Energy, environment and sustainable development, Renew. Sustain. Energy Rev. 12 (2008) 2265-2300.

Google Scholar

[8] M. Rafiq, M. Shafique, A. Azam, M. Ateeq, I.A. Khan, A. Hussain, Sustainable, renewable and environmental-friendly insulation systems for high voltages applications, Molecules 25 (2020) 3901.

DOI: 10.3390/molecules25173901

Google Scholar

[9] M. Jin, R. Tang, Y. Ji, F. Liu, L. Gao, D. Huisingh, Impact of advanced manufacturing on sustainability: An overview of the special volume on advanced manufacturing for sustainability and low fossil carbon emissions, J. Clean. Prod. 161 (2017) 69-74.

DOI: 10.1016/j.jclepro.2017.05.101

Google Scholar

[10] Z. Pásztory, An overview of factors influencing thermal conductivity of building insulation materials, J. Build. Eng. 44 (2021) 102604.

DOI: 10.1016/j.jobe.2021.102604

Google Scholar

[11] F.E. Boafo, J.H. Kim, J.G. Ahn, S.M. Kim, J.T. Kim, Slim curtain wall spandrel integrated with vacuum insulation panel: A state-of-the-art review and future opportunities, J. Build. Eng. 42 (2021) 102445.

DOI: 10.1016/j.jobe.2021.102445

Google Scholar

[12] A. Karimah, M.R. Ridho, S.S. Munawar, Y. Amin, R. Damayanti, S. Siengchin, A comprehensive review on natural fibers: Technological and socio-economical aspects, Polymers 13 (2021) 4280.

DOI: 10.3390/polym13244280

Google Scholar

[13] A. Almusaed, A. Almssad, A. Alasadi, I. Yitmen, S. Al-Samaraee, Assessing the role and efficiency of thermal insulation by the 'Bio-Green Panel' in enhancing sustainability in a built environment, Sustainability 15 (2023) 10418.

DOI: 10.3390/su151310418

Google Scholar

[14] F. Asdrubali, F. D'Alessandro, S. Schiavoni, A review of unconventional sustainable building insulation materials, Sustain. Mater. Technol. 4 (2015) 1-17.

Google Scholar

[15] U. Berardi, M. Naldi, The impact of the temperature dependent thermal conductivity of insulating materials on the effective building envelope performance, Energy Build. 144 (2017) 262-275.

DOI: 10.1016/j.enbuild.2017.03.052

Google Scholar

[16] W. Zhao, W. Yan, Z. Zhang, H. Gao, Q. Zeng, G. Du, M. Fan, Development and performance evaluation of wood-pulp/glass fibre hybrid composites as core materials for vacuum insulation panels, J. Clean. Prod. 357 (2022) 131957.

DOI: 10.1016/j.jclepro.2022.131957

Google Scholar

[17] P. Ricciardi, G. Cillari, M. Carnevale Miino, M.C. Collivignarelli, Valorization of agro-industry residues in the building and environmental sector: A review, Waste Manag. Res. 38 (2020) 487-513.

DOI: 10.1177/0734242x20904426

Google Scholar

[18] M. Strang, P. Leardini, A. Brambilla, E. Gasparri, Mass timber envelopes in Passivhaus buildings: Designing for moisture safety in hot and humid Australian climates, Build. 11 (2021) 478.

DOI: 10.3390/buildings11100478

Google Scholar

[19] B. Abu-Jdayil, A.H. Mourad, W. Hittini, M. Hassan, S. Hameedi, Traditional, state-of-the-art and renewable thermal building insulation materials: An overview, Constr. Build. Mater. 214 (2019) 709-735.

DOI: 10.1016/j.conbuildmat.2019.04.102

Google Scholar

[20] I.R. Abubakar, U.L. Dano, Sustainable urban planning strategies for mitigating climate change in Saudi Arabia, Environ. Dev. Sustain. 22 (2020) 5129-5152.

DOI: 10.1007/s10668-019-00417-1

Google Scholar

[21] J.R. Zhao, R. Zheng, J. Tang, H.J. Sun, J. Wang, A mini-review on building insulation materials from perspective of plastic pollution: Current issues and natural fibres as a possible solution, J. Hazard. Mater. 438 (2022) 12949.

DOI: 10.1016/j.jhazmat.2022.129449

Google Scholar

[22] H.H. Cho, V. Strezov, T.J. Evans, A review on global warming potential, challenges and opportunities of renewable hydrogen production technologies, Sustain. Mater. Technol. 35 (2023) e00567.

DOI: 10.1016/j.susmat.2023.e00567

Google Scholar

[23] S.O. Ekolu, Implications of global CO2 emissions on natural carbonation and service lifespan of concrete infrastructures–reliability analysis, Cem. Concr. Compos. 114 (2020) 103744.

DOI: 10.1016/j.cemconcomp.2020.103744

Google Scholar

[24] I. El-Darwish, M. Gomaa, Retrofitting strategy for building envelopes to achieve energy efficiency, Alex. Eng. J. 56 (2017) 579-589.

DOI: 10.1016/j.aej.2017.05.011

Google Scholar

[25] P. Nejat, F. Jomehzadeh, M.M. Taheri, M. Gohari, M.Z.A. Majid, A global review of energy consumption, CO2 emissions and policy in the residential sector (with an overview of the top ten CO2 emitting countries), Renew. Sustain. Energy Rev. 43 (2015) 843-862.

DOI: 10.1016/j.rser.2014.11.066

Google Scholar

[26] H. Schandl, S. Hatfield-Dodds, T. Wiedmann, A. Geschke, Y. Cai, J. West, A. Owen, Decoupling global environmental pressure and economic growth: scenarios for energy use, materials use and carbon emissions, J. Clean. Prod. 132 (2016) 45-56.

DOI: 10.1016/j.jclepro.2015.06.100

Google Scholar

[27] S.B. Sadineni, S. Madala, R.F. Boehm, Passive building energy savings: A review of building envelope components, Renew. Sustain. Energy Rev. 15 (2011) 3617-3631.

DOI: 10.1016/j.rser.2011.07.014

Google Scholar

[28] P.K.S. Rathore, N.K. Gupta, D. Yadav, S.K. Shukla, S. Kaul, Thermal performance of the building envelope integrated with phase change material for thermal energy storage: an updated review, Sustain. Cities Soc. 79 (2022) 103690.

DOI: 10.1016/j.scs.2022.103690

Google Scholar

[29] M.V. Monteiro, T. Blanuša, A. Verhoef, M. Richardson, P. Hadley, R.W.F. Cameron, Functional green roofs: Importance of plant choice in maximising summertime environmental cooling and substrate insulation potential, Energy Build. 141 (2017) 56-68.

DOI: 10.1016/j.enbuild.2017.02.011

Google Scholar

[30] M.S. Al-Homoud, Performance characteristics and practical applications of common building thermal insulation materials, Build. Environ. 40 (2005) 353-366.

DOI: 10.1016/j.buildenv.2004.05.013

Google Scholar

[31] C. Li, B. Li, N. Pan, Z. Chen, M.U. Saeed, T. Xu, Y. Yang, Thermo-physical properties of polyester fiber reinforced fumed silica/hollow glass microsphere composite core and resulted vacuum insulation panel, Energy Build. 125 (2016) 298-309.

DOI: 10.1016/j.enbuild.2016.05.013

Google Scholar

[32] P.K. Latha, Y. Darshana, V. Venugopal, Role of building material in thermal comfort in tropical climates–A review, J. Build. Eng. 3 (2015) 104-113.

DOI: 10.1016/j.jobe.2015.06.003

Google Scholar

[33] N.H. Ramli Sulong, S.A.S. Mustapa, M.K. Abdul Rashid, Application of expanded polystyrene (EPS) in buildings and constructions: A review, J. Appl. Polym. Sci. 136 (2019) 47529.

DOI: 10.1002/app.47529

Google Scholar

[34] K. Moulakhnif, H.A. Ousaleh, S. Sair, Y. Bouhaj, A. El Majd, M. Ghazoui, A. El Bouari, Renewable approaches to building heat: exploring cutting-edge innovations in thermochemical energy storage for building heating, Energy Build. 318 (2024) 114421.

DOI: 10.1016/j.enbuild.2024.114421

Google Scholar

[35] E. Cuce, P.M. Cuce, C.J. Wood, S.B. Riffat, Toward aerogel based thermal superinsulation in buildings: A comprehensive review, Renew. Sustain. Energy Rev. 34 (2014) 273-299.

DOI: 10.1016/j.rser.2014.03.017

Google Scholar

[36] R. Islam, T.H. Nazifa, S.F. Mohamed, Factors influencing facilities management cost performance in building projects, J. Perform. Constr. Facil. 33 (2019) 04019036.

DOI: 10.1061/(asce)cf.1943-5509.0001284

Google Scholar

[37] K. Ahmed Ali, M.I. Ahmad, Y. Yusup, Issues, impacts, and mitigations of carbon dioxide emissions in the building sector, Sustainability 12 (2020) 7427.

DOI: 10.3390/su12187427

Google Scholar

[38] N. Soares, J. Bastos, L.D. Pereira, A. Soares, A.R. Amaral, E. Asadi, A.R. Gaspar, A review on current advances in the energy and environmental performance of buildings towards a more sustainable built environment, Renew. Sustain. Energy Rev. 77 (2017) 845-860.

DOI: 10.1016/j.rser.2017.04.027

Google Scholar

[39] M. Pavelek, T. Adamová, Bio-waste thermal insulation panel for sustainable building construction in steady and unsteady-state conditions, Mater. 12 (2019) 2004.

DOI: 10.3390/ma12122004

Google Scholar

[40] M. Farouk, A. Soltan, S. Schlüter, E. Hamzawy, A. Farrag, A. El-Kammar, H. Pollmann, Optimization of microstructure of basalt-based fibers intended for improved thermal and acoustic insulations, J. Build. Eng. 34 (2021) 101904.

DOI: 10.1016/j.jobe.2020.101904

Google Scholar

[41] I. Mawardi, S. Aprilia, M. Faisal, S. Rizal, Characterization of thermal bio-insulation materials based on oil palm wood: The effect of hybridization and particle size, Polymers 13 (2021) 3287.

DOI: 10.3390/polym13193287

Google Scholar

[42] B. Lou, H. Shen, B. Liu, J. Liu, S. Zhang, Recycling secondary aluminum dross to make building materials: A review, Constr. Build. Mater. 409 (2023) 133989.

DOI: 10.1016/j.conbuildmat.2023.133989

Google Scholar

[43] P.O. Awoyera, A.D. Akinrinade, A.G. de Sousa Galdino, F. Althoey, M.S. Kirgiz, B.A. Tayeh, Thermal insulation and mechanical characteristics of cement mortar reinforced with mineral wool and rice straw fibers, J. Build. Eng. 53 (2022) 104568.

DOI: 10.1016/j.jobe.2022.104568

Google Scholar

[44] S. Mousavi, M. Gijón-Rivera, C.I. Rivera-Solorio, C.G. Rangel, Energy, comfort, and environmental assessment of passive techniques integrated into low-energy residential buildings in semi-arid climate, Energy Build. 263 (2022) 112053.

DOI: 10.1016/j.enbuild.2022.112053

Google Scholar

[45] M. Robati, D. Daly, G. Kokogiannakis, A method of uncertainty analysis for whole-life embodied carbon emissions (CO2-e) of building materials of a net-zero energy building in Australia, J. Clean. Prod. 225 (2019) 541-553.

DOI: 10.1016/j.jclepro.2019.03.339

Google Scholar

[46] A.R. Rempel, J. Danis, A.W. Rempel, M. Fowler, S. Mishra, Improving the passive survivability of residential buildings during extreme heat events in the Pacific Northwest, Appl. Energy 321 (2022) 119323.

DOI: 10.1016/j.apenergy.2022.119323

Google Scholar

[47] C.K. Chau, T.M. Leung, W.Y. Ng, A review on life cycle assessment, life cycle energy assessment and life cycle carbon emissions assessment on buildings, Appl. Energy 143 (2015) 395-413.

DOI: 10.1016/j.apenergy.2015.01.023

Google Scholar

[48] Y. Elaouzy, A. El Fadar, Energy, economic and environmental benefits of integrating passive design strategies into buildings: A review, Renew. Sustain. Energy Rev. 167 (2022) 112828.

DOI: 10.1016/j.rser.2022.112828

Google Scholar