[1]
L. Dong, Z. Huang, Some evidence and new insights for feedback loops of human-nature interactions from a holistic Earth perspective, J. Clean. Prod. 139667 (2023).
DOI: 10.1016/j.jclepro.2023.139667
Google Scholar
[2]
F. Adedoyin, I. Ozturk, I. Abubakar, T. Kumeka, O. Folarin, F.V. Bekun, Structural breaks in CO2 emissions: Are they caused by climate change protests or other factors?, J. Environ. Manag. 266 (2020) 110628.
DOI: 10.1016/j.jenvman.2020.110628
Google Scholar
[3]
M. Bilgili, S. Tumse, S. Nar, Comprehensive overview on the present state and evolution of global warming, climate change, greenhouse gasses, and renewable energy, Arab. J. Sci. Eng. 1-29 (2024).
DOI: 10.1007/s13369-024-09390-y
Google Scholar
[4]
X. Zhang, N. Heeren, C. Bauer, P. Burgherr, R. McKenna, G. Habert, The impacts of future sectoral change on the greenhouse gas emissions of construction materials for Swiss residential buildings, Energy Build. 303 (2024) 113824.
DOI: 10.1016/j.enbuild.2023.113824
Google Scholar
[5]
V.J. Reddy, M.F. Ghazali, S. Kumarasamy, Advancements in phase change materials for energy-efficient building construction: A comprehensive review, J. Energy Storage 81 (2024) 110494.
DOI: 10.1016/j.est.2024.110494
Google Scholar
[6]
H. Ajabli, A. Zoubir, R. Elotmani, M. Louzazni, K. Kandoussi, A. Daya, Review on eco-friendly insulation material used for indoor comfort in building, Renew. Sustain. Energy Rev. 185 (2023) 113609.
DOI: 10.1016/j.rser.2023.113609
Google Scholar
[7]
A.M. Omer, Energy, environment and sustainable development, Renew. Sustain. Energy Rev. 12 (2008) 2265-2300.
Google Scholar
[8]
M. Rafiq, M. Shafique, A. Azam, M. Ateeq, I.A. Khan, A. Hussain, Sustainable, renewable and environmental-friendly insulation systems for high voltages applications, Molecules 25 (2020) 3901.
DOI: 10.3390/molecules25173901
Google Scholar
[9]
M. Jin, R. Tang, Y. Ji, F. Liu, L. Gao, D. Huisingh, Impact of advanced manufacturing on sustainability: An overview of the special volume on advanced manufacturing for sustainability and low fossil carbon emissions, J. Clean. Prod. 161 (2017) 69-74.
DOI: 10.1016/j.jclepro.2017.05.101
Google Scholar
[10]
Z. Pásztory, An overview of factors influencing thermal conductivity of building insulation materials, J. Build. Eng. 44 (2021) 102604.
DOI: 10.1016/j.jobe.2021.102604
Google Scholar
[11]
F.E. Boafo, J.H. Kim, J.G. Ahn, S.M. Kim, J.T. Kim, Slim curtain wall spandrel integrated with vacuum insulation panel: A state-of-the-art review and future opportunities, J. Build. Eng. 42 (2021) 102445.
DOI: 10.1016/j.jobe.2021.102445
Google Scholar
[12]
A. Karimah, M.R. Ridho, S.S. Munawar, Y. Amin, R. Damayanti, S. Siengchin, A comprehensive review on natural fibers: Technological and socio-economical aspects, Polymers 13 (2021) 4280.
DOI: 10.3390/polym13244280
Google Scholar
[13]
A. Almusaed, A. Almssad, A. Alasadi, I. Yitmen, S. Al-Samaraee, Assessing the role and efficiency of thermal insulation by the 'Bio-Green Panel' in enhancing sustainability in a built environment, Sustainability 15 (2023) 10418.
DOI: 10.3390/su151310418
Google Scholar
[14]
F. Asdrubali, F. D'Alessandro, S. Schiavoni, A review of unconventional sustainable building insulation materials, Sustain. Mater. Technol. 4 (2015) 1-17.
Google Scholar
[15]
U. Berardi, M. Naldi, The impact of the temperature dependent thermal conductivity of insulating materials on the effective building envelope performance, Energy Build. 144 (2017) 262-275.
DOI: 10.1016/j.enbuild.2017.03.052
Google Scholar
[16]
W. Zhao, W. Yan, Z. Zhang, H. Gao, Q. Zeng, G. Du, M. Fan, Development and performance evaluation of wood-pulp/glass fibre hybrid composites as core materials for vacuum insulation panels, J. Clean. Prod. 357 (2022) 131957.
DOI: 10.1016/j.jclepro.2022.131957
Google Scholar
[17]
P. Ricciardi, G. Cillari, M. Carnevale Miino, M.C. Collivignarelli, Valorization of agro-industry residues in the building and environmental sector: A review, Waste Manag. Res. 38 (2020) 487-513.
DOI: 10.1177/0734242x20904426
Google Scholar
[18]
M. Strang, P. Leardini, A. Brambilla, E. Gasparri, Mass timber envelopes in Passivhaus buildings: Designing for moisture safety in hot and humid Australian climates, Build. 11 (2021) 478.
DOI: 10.3390/buildings11100478
Google Scholar
[19]
B. Abu-Jdayil, A.H. Mourad, W. Hittini, M. Hassan, S. Hameedi, Traditional, state-of-the-art and renewable thermal building insulation materials: An overview, Constr. Build. Mater. 214 (2019) 709-735.
DOI: 10.1016/j.conbuildmat.2019.04.102
Google Scholar
[20]
I.R. Abubakar, U.L. Dano, Sustainable urban planning strategies for mitigating climate change in Saudi Arabia, Environ. Dev. Sustain. 22 (2020) 5129-5152.
DOI: 10.1007/s10668-019-00417-1
Google Scholar
[21]
J.R. Zhao, R. Zheng, J. Tang, H.J. Sun, J. Wang, A mini-review on building insulation materials from perspective of plastic pollution: Current issues and natural fibres as a possible solution, J. Hazard. Mater. 438 (2022) 12949.
DOI: 10.1016/j.jhazmat.2022.129449
Google Scholar
[22]
H.H. Cho, V. Strezov, T.J. Evans, A review on global warming potential, challenges and opportunities of renewable hydrogen production technologies, Sustain. Mater. Technol. 35 (2023) e00567.
DOI: 10.1016/j.susmat.2023.e00567
Google Scholar
[23]
S.O. Ekolu, Implications of global CO2 emissions on natural carbonation and service lifespan of concrete infrastructures–reliability analysis, Cem. Concr. Compos. 114 (2020) 103744.
DOI: 10.1016/j.cemconcomp.2020.103744
Google Scholar
[24]
I. El-Darwish, M. Gomaa, Retrofitting strategy for building envelopes to achieve energy efficiency, Alex. Eng. J. 56 (2017) 579-589.
DOI: 10.1016/j.aej.2017.05.011
Google Scholar
[25]
P. Nejat, F. Jomehzadeh, M.M. Taheri, M. Gohari, M.Z.A. Majid, A global review of energy consumption, CO2 emissions and policy in the residential sector (with an overview of the top ten CO2 emitting countries), Renew. Sustain. Energy Rev. 43 (2015) 843-862.
DOI: 10.1016/j.rser.2014.11.066
Google Scholar
[26]
H. Schandl, S. Hatfield-Dodds, T. Wiedmann, A. Geschke, Y. Cai, J. West, A. Owen, Decoupling global environmental pressure and economic growth: scenarios for energy use, materials use and carbon emissions, J. Clean. Prod. 132 (2016) 45-56.
DOI: 10.1016/j.jclepro.2015.06.100
Google Scholar
[27]
S.B. Sadineni, S. Madala, R.F. Boehm, Passive building energy savings: A review of building envelope components, Renew. Sustain. Energy Rev. 15 (2011) 3617-3631.
DOI: 10.1016/j.rser.2011.07.014
Google Scholar
[28]
P.K.S. Rathore, N.K. Gupta, D. Yadav, S.K. Shukla, S. Kaul, Thermal performance of the building envelope integrated with phase change material for thermal energy storage: an updated review, Sustain. Cities Soc. 79 (2022) 103690.
DOI: 10.1016/j.scs.2022.103690
Google Scholar
[29]
M.V. Monteiro, T. Blanuša, A. Verhoef, M. Richardson, P. Hadley, R.W.F. Cameron, Functional green roofs: Importance of plant choice in maximising summertime environmental cooling and substrate insulation potential, Energy Build. 141 (2017) 56-68.
DOI: 10.1016/j.enbuild.2017.02.011
Google Scholar
[30]
M.S. Al-Homoud, Performance characteristics and practical applications of common building thermal insulation materials, Build. Environ. 40 (2005) 353-366.
DOI: 10.1016/j.buildenv.2004.05.013
Google Scholar
[31]
C. Li, B. Li, N. Pan, Z. Chen, M.U. Saeed, T. Xu, Y. Yang, Thermo-physical properties of polyester fiber reinforced fumed silica/hollow glass microsphere composite core and resulted vacuum insulation panel, Energy Build. 125 (2016) 298-309.
DOI: 10.1016/j.enbuild.2016.05.013
Google Scholar
[32]
P.K. Latha, Y. Darshana, V. Venugopal, Role of building material in thermal comfort in tropical climates–A review, J. Build. Eng. 3 (2015) 104-113.
DOI: 10.1016/j.jobe.2015.06.003
Google Scholar
[33]
N.H. Ramli Sulong, S.A.S. Mustapa, M.K. Abdul Rashid, Application of expanded polystyrene (EPS) in buildings and constructions: A review, J. Appl. Polym. Sci. 136 (2019) 47529.
DOI: 10.1002/app.47529
Google Scholar
[34]
K. Moulakhnif, H.A. Ousaleh, S. Sair, Y. Bouhaj, A. El Majd, M. Ghazoui, A. El Bouari, Renewable approaches to building heat: exploring cutting-edge innovations in thermochemical energy storage for building heating, Energy Build. 318 (2024) 114421.
DOI: 10.1016/j.enbuild.2024.114421
Google Scholar
[35]
E. Cuce, P.M. Cuce, C.J. Wood, S.B. Riffat, Toward aerogel based thermal superinsulation in buildings: A comprehensive review, Renew. Sustain. Energy Rev. 34 (2014) 273-299.
DOI: 10.1016/j.rser.2014.03.017
Google Scholar
[36]
R. Islam, T.H. Nazifa, S.F. Mohamed, Factors influencing facilities management cost performance in building projects, J. Perform. Constr. Facil. 33 (2019) 04019036.
DOI: 10.1061/(asce)cf.1943-5509.0001284
Google Scholar
[37]
K. Ahmed Ali, M.I. Ahmad, Y. Yusup, Issues, impacts, and mitigations of carbon dioxide emissions in the building sector, Sustainability 12 (2020) 7427.
DOI: 10.3390/su12187427
Google Scholar
[38]
N. Soares, J. Bastos, L.D. Pereira, A. Soares, A.R. Amaral, E. Asadi, A.R. Gaspar, A review on current advances in the energy and environmental performance of buildings towards a more sustainable built environment, Renew. Sustain. Energy Rev. 77 (2017) 845-860.
DOI: 10.1016/j.rser.2017.04.027
Google Scholar
[39]
M. Pavelek, T. Adamová, Bio-waste thermal insulation panel for sustainable building construction in steady and unsteady-state conditions, Mater. 12 (2019) 2004.
DOI: 10.3390/ma12122004
Google Scholar
[40]
M. Farouk, A. Soltan, S. Schlüter, E. Hamzawy, A. Farrag, A. El-Kammar, H. Pollmann, Optimization of microstructure of basalt-based fibers intended for improved thermal and acoustic insulations, J. Build. Eng. 34 (2021) 101904.
DOI: 10.1016/j.jobe.2020.101904
Google Scholar
[41]
I. Mawardi, S. Aprilia, M. Faisal, S. Rizal, Characterization of thermal bio-insulation materials based on oil palm wood: The effect of hybridization and particle size, Polymers 13 (2021) 3287.
DOI: 10.3390/polym13193287
Google Scholar
[42]
B. Lou, H. Shen, B. Liu, J. Liu, S. Zhang, Recycling secondary aluminum dross to make building materials: A review, Constr. Build. Mater. 409 (2023) 133989.
DOI: 10.1016/j.conbuildmat.2023.133989
Google Scholar
[43]
P.O. Awoyera, A.D. Akinrinade, A.G. de Sousa Galdino, F. Althoey, M.S. Kirgiz, B.A. Tayeh, Thermal insulation and mechanical characteristics of cement mortar reinforced with mineral wool and rice straw fibers, J. Build. Eng. 53 (2022) 104568.
DOI: 10.1016/j.jobe.2022.104568
Google Scholar
[44]
S. Mousavi, M. Gijón-Rivera, C.I. Rivera-Solorio, C.G. Rangel, Energy, comfort, and environmental assessment of passive techniques integrated into low-energy residential buildings in semi-arid climate, Energy Build. 263 (2022) 112053.
DOI: 10.1016/j.enbuild.2022.112053
Google Scholar
[45]
M. Robati, D. Daly, G. Kokogiannakis, A method of uncertainty analysis for whole-life embodied carbon emissions (CO2-e) of building materials of a net-zero energy building in Australia, J. Clean. Prod. 225 (2019) 541-553.
DOI: 10.1016/j.jclepro.2019.03.339
Google Scholar
[46]
A.R. Rempel, J. Danis, A.W. Rempel, M. Fowler, S. Mishra, Improving the passive survivability of residential buildings during extreme heat events in the Pacific Northwest, Appl. Energy 321 (2022) 119323.
DOI: 10.1016/j.apenergy.2022.119323
Google Scholar
[47]
C.K. Chau, T.M. Leung, W.Y. Ng, A review on life cycle assessment, life cycle energy assessment and life cycle carbon emissions assessment on buildings, Appl. Energy 143 (2015) 395-413.
DOI: 10.1016/j.apenergy.2015.01.023
Google Scholar
[48]
Y. Elaouzy, A. El Fadar, Energy, economic and environmental benefits of integrating passive design strategies into buildings: A review, Renew. Sustain. Energy Rev. 167 (2022) 112828.
DOI: 10.1016/j.rser.2022.112828
Google Scholar