Coupling of the Cylindrical Shell with Side Elements

Article Preview

Abstract:

The paper proposes an analytical method for calculating a long cylindrical shell supported by two identical side elements and loaded with vertical load. The case when the shell is hinged on curvilinear edges is considered, and recommendations for taking into account other boundary conditions are given. No restrictions are imposed on the shape and dimensions of the cross-section of the side element. The proposed algorithm assumes the possibility of implementing two approaches - calculation according to the general semimoment theory and calculation with simplifying hypotheses for flat shells of medium length. In the presented work, the first approach is considered. Mathematically, the problem is reduced to a system of four linear equations. By solving this system, it is possible to determine the forces and displacements due to the action of additional boundary forces, and by adding them with the corresponding components of the momentless stress state, one can obtain the total forces and displacements in the cylindrical shell.

You might also be interested in these eBooks

Info:

Pages:

11-20

Citation:

Online since:

August 2023

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2023 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Zhyhalko, Yu.P. (1966). Raschet tonkykh upruhykh tsylyndrycheskykh obolochek na lokalnye nahruzky. [Calculation of thin elastic cylindrical shells for local loads]. Issled. po teor. plastyn y obolochek. 4. 3–41. [in Russian].

Google Scholar

[2] Vanko, V.Y. (2011). Tsylyndrycheskaia obolochka pod vneshnym davlenyem: neklassycheskoe reshenye zadachy o bolshykh peremeshchenyiakh [Cylindrical shell under external pressure: non-classical solution of the problem of large displacements]. Mekhanyka deformyruemoho tverdoho tela. Vestnyk Nyzhehorodskoho unyversyteta ym. N.Y. Lobachevskoho. 4 (4). 1413–1414. [in Russian].

Google Scholar

[3] Khalylov, S. A., Kopychko, V. V., Kryvtsov, V. S., Pavlenko, V. N. (2016). Osnovnaia kraevaia zadacha obshchei klassycheskoi teoryy otkrytoi tsylyndrycheskoi obolochky. Osobennosty deformyrovanyia pry zhestkom zashchemlenyy hranychnoho kontura [The main boundary value problem of the general classical theory of an open cylindrical shell. Peculiarities of deformation under rigid pinching of the boundary contour]. Avyatsyonno-kosmycheskaia tekhnyka y tekhnolohyia. 1 (128). 5-17. [in Russian].

Google Scholar

[4] Simitses, G. J. (1990). Thin Cylindrical Shells. In: Dynamic Stability of Suddenly Loaded Structures. Springer. New York, NY

DOI: 10.1007/978-1-4612-3244-5_9

Google Scholar

[5] Adegova, L. A., Bobrysheva, M. V., Scherbinina, A. E. (2021). Study of stability loss of cylindrical shell made of composite material. The Russian Automobile and Highway Industry Journal. 18(3). 342-350.

DOI: 10.26518/2071-7296-2021-18-3-342-350

Google Scholar

[6] Bochkarev, S. A. (2010). Sobstvennye kolebanyia vrashchaiushcheisia kruhovoi tsylyndrycheskoi obolochky s zhydkostiu [Natural oscillations of a rotating circular cylindrical shell with liquid]. Vychyslytelnaia mekhanyka sploshnykh sred. 3(2). 24-33. [in Russian].

Google Scholar

[7] Zemlianukhyn, A.Y., Bochkarev, A.V., Ratushnyi, A.V., Chernenko, A.V. (2022). Obobshchennaia model nelyneino-upruhoho osnovanyia y prodolnыe volny v tsylyndrycheskykh obolochkakh [A generalized model of a nonlinearly elastic foundation and longitudinal waves in cylindrical shells]. Yzvestyia Saratovskoho unyversyteta. Novaia seryia. Seryia : Matematyka. Mekhanyka. Ynformatyka. 22(2). 196-204. DOI: 10.18500/1816-9791-2022-22-2-196-204. [in Russian].

DOI: 10.18500/1816-9791-2022-22-2-196-204

Google Scholar

[8] DBN V.2.6-98:2009 (2009). Konstruktsii budynkiv i sporud. Betonni ta zalizobetonni konstruktsii. Osnovni polozhennia [Structures of hulls and spores. Concrete and concrete structures. Basic provisions]. [in Ukranian].

Google Scholar

[9] EN 1992-1-4 (1992). Eurocode 2: Design of concrete structures

Google Scholar

[10] NYYZhB ym. A. A. Hvozdeva (2010. )Posobye po proektyrovanyiu zhelezobetonnykh prostranstvennykh konstruktsyi pokrytyi y perekrytyi (k SP 52-117-2008*) [Manual for the design of reinforced concrete spatial structures of coatings and ceilings]. ynstytut OAO «NYTs «Stroytelstvo». M. [in Russian].

Google Scholar

[11] Vlasov, V. Z., Mroshchynskyi, A. K. (1950). Kontaktnye zadachy po teoryy tsylyndrycheskykh obolochek, podkreplennykh prodolnymy rebramy [Contact problems in the theory of cylindrical shells supported by longitudinal ribs]. Yssledovanyia po voprosam teoryy y proektyrovanyia tonkostennыkh konstruktsyi. Sbornyk statei pod red. V.Z. Vlasova. M. L. S. 76 - 92. [in Russian].

Google Scholar

[12] Vorovycha, Y. Y., Aleksandrova, V.M. (Eds). (2001). Mekhanyka kontaktnykh vzaymodeistvyi [Mechanics of contact interactions]. M.: Fyzmatlyt. [in Russian].

Google Scholar

[13] Myleikovskyi, Y.E., Vasylkov, B.C. (1952). Raschet pokrytyi y perekrytyi yz polohykh vypuklykh obolochek dvoiakoi kryvyzny [alculation of coverings and floors from flat convex shells of double curvature]. Sb.TsNYPS. M.: Hosstroiyzdat. [in Russian].

Google Scholar

[14] Azizov, T.N. (2006). Prostorova robota zalizobetonnykh perekryttiv. Teoriia ta metody rozrakhunku [Theory and methods of rozrahunka: Abstract of the thesis]: Avtoref. dys... d-ra tekhn. Nauk. Poltav. nats. tekhn. un-t im. Yu.Kondratiuka. [in Ukranian].

Google Scholar

[15] Vlasov, V. Z. (1949). Obshchaia teoryia obolochek y ee prylozhenyia v tekhnyke [General theory of shells and its applications in engineering]. M.-L.: Hostekhyzdat. [in Russian].

Google Scholar

[16] Dashhenko, A.F., Kolomiecz, L.V., Orobej, V.F., Surianinov, M. G. (2010) Chislenno–analiticheskij metod granichny`kh e`lementov. Odessa: VMV. V 2–kh tomakh. [in Russian].

Google Scholar

[17] Krutyi, Yu.S., Surianynov, N. H., Chuchmai, A. M. (2018). Metody rascheta tsylyndrycheskykh obolochek [Methods for calculating cylindrical shells]. Odesa: OHASA. [in Russian].

Google Scholar

[18] Slezynher, Y.N. (1966). Reshenye osnovnykh uravnenyi polubezmomentnoi teoryy tsylyndrycheskykh obolochek [Solving the basic equations of the semi-momentless theory of cylindrical shells]. Stroytelnaia mekhanyka y raschet sooruzhenyi. M. [in Russian].

Google Scholar

[19] Vyhodskyi, M.Ia. (2010). Spravochnyk po vyыsshei matematyke [Handbook of higher mathematics]. Moskva: AST: Astrel. [in Russian].

Google Scholar