[1]
Simvulidi I. A. Calculation of engineering structures on an elastic foundation. Ed. 3rd, rev. and additional Textbook for universities. M.: Vy`ssh. Shkola, (1973) 431.
Google Scholar
[2]
Zienkiewich O. C., Taylor R. L. The Finite Element Method for Solid and Structural Mechanics. Oxford: Butterworth-Heinemann, (2005) 736.
Google Scholar
[3]
Kaddari M., Kaci A., Bousahla A. A., Tounsi A., Bourada F., Tounsi A., Al-Osta M. A. A study on the structural behaviour of functionally graded porous plates on elastic foundation using a new quasi-3D model: Bending and free vibration analysis. Computers and Concrete, 25(1) (2020) 37–57.
DOI: 10.1142/s0219455424501177
Google Scholar
[4]
Huang Y., Li X.-F. Effect of radial reaction force on the bending of circular plates resting on a ring support. International Journal of Mechanical Sciences, 119 (2016) 197–207.
DOI: 10.1016/j.ijmecsci.2016.10.014
Google Scholar
[5]
Salawu S. A., Sobamowo G. M., Sadiq, O. M. Investigation of dynamic behaviour of circular plates resting on Winkler and Pasternak foundations. SN Appl. Sci., 1, 1588 (2019).
DOI: 10.1007/s42452-019-1588-8
Google Scholar
[6]
Bosakov S.V. On the solution of a non-axisymmetric contact problem for a round plate. Vestnyk Brestskoho hosudarstvennoho tekhnycheskoho unyversyteta, Brest, 1 (85) (2014) 83-87.
Google Scholar
[7]
Bosakov S.V. To the calculation of rectangular slabs on an elastic foundation. Vestnik BNTU, 5 (2007) 5–10.
Google Scholar
[8]
Czejtlin A. I. Applied Methods for Solving Boundary Problems of Structural Mechanics. M.: Strojizdat (1984) 334.
Google Scholar
[9]
Bosakov S. V. The Ritz Method in Contact Problems of the Theory of Elasticity. Brest (2006) 108.
Google Scholar
[10]
Krutii Yu. S. Development of the method of solving the problems of stability and cracking of deformable systems with changing non-permanent parameters. » dys… d-ra. tekhn. nauk: 01.02.04 Odesa (2016) 272.
Google Scholar
[11]
Krutii Y.S., Surianinov M.G., Karnaukhova G.S. «Calculation Method for Axisymmetric Bending of Circular and Annular Plates on a Changeable Elastic Bed, Part 1. Analytical Relations», Strength of Materials, Vol. 53(2), p.247–257, 2021.
DOI: 10.1007/s11223-021-00282-2
Google Scholar
[12]
Krutii Yu. S., Surianinov M. G. Exact Solution of the Differential Equation for the Stability of the Equilibrium of an Elastic Rod with an Arbitrary Continuous Variable Stiffness. Vi`snik KNUTD, 1 (94) (2016) 72–84.
Google Scholar
[13]
Horodetskyi D. A., Barabash M. S., Vodopianov R. Iu. Prohrammnyi kompleks LYRA-SAPR 2015, Uchebnoe posobye; pod red. akademyka RAASN A. S. Horodetskoho, M., (2015).
Google Scholar
[14]
Shvab'yuk, V. I., Krutii, Y. S., Surianinov M. G. Investigation of the Free Vibrations of Bar Elements with Variable Parameters Using the Direct Integration Method. Strength of MaterialsVolume, 48(3) (2016) 384–393.
DOI: 10.1007/s11223-016-9776-x
Google Scholar
[15]
Krutii Yu., Surianinov M., Vandynskyi V. Analytic Formulas for the Cantilever Structures' Natural Frequencies with Taking into Account the Dead Weight. Materials Science Forum, 968 (2019) 450-459.
DOI: 10.4028/www.scientific.net/msf.968.450
Google Scholar