Tracer Diffusion and Ionic Conduction in Standard Silica Glasses

Article Preview

Abstract:

The tracer diffusivities of 22Na and 45Ca in two high-quality standard silica glasses have been measured in the temperature range between 473 and 783 K. The temperature dependences of the tracer diffusion coefficients in both glasses follow Arrhenius laws. The diffusion of 22Na is six to seven orders of magnitude faster than the diffusion of 45Ca. The ionic conductivity was determined by impedance spectroscopy and the conductivity diffusion coefficient Ds was deduced from the dc conductivity via the Nernst-Einstein relation. The temperature dependences of Ds for both glasses follow also Arrhenius functions. The activation parameters and pre-exponential factors for tracer diffusion and for conductivity diffusion were determined. The activation enthalpy of 22Na diffusion is almost equal to the activation enthalpy of the dc conductivity. We conclude that the conductivity of standard glasses is due to the motion of Na ions. The diffusivities of 22Na and 45Ca in soda-lime glasses increase with increasing Na2O content.

You might also be interested in these eBooks

Info:

Periodical:

Defect and Diffusion Forum (Volumes 237-240)

Pages:

282-290

Citation:

Online since:

April 2005

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2005 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] R. Terai, T. Kitaoka and Ueno: Yogyo Kyokaishi Vol. 77 (1969), p.88.

Google Scholar

[2] E.L. Williams and R.W. Heckman: Phys. Chem. Glasses Vol. 5 (1964), p.111.

Google Scholar

[3] H. Frischat: Glastechn. Ber. Vol. 44 (1971), p.93.

Google Scholar

[4] F. Natrup and H. Bracht, private communication.

Google Scholar

[5] F. Wenwer, A. Gude, G. Rummel, M. Eggersmann, T. Zumkley, N.A. Stolwijk, and H. Mehrer: Measurements Sci. Technol. Vol 7 (1996), p.632.

DOI: 10.1088/0957-0233/7/4/021

Google Scholar

[6] K. Funke and R. Hoppe, Solid State Ionics Vol. 40-41 (1990), p.200.

Google Scholar

[7] K. Funke, Prog. Solid State Chem. Vol. 22 (1993), p.111.

Google Scholar

[8] H. Mehrer (vol. Ed), Diffusion in Metals and Alloys, Landolt-Börnstein: New Series group III: Crystal and Solid State Physics, Vol 26, Springer Verlag, Berlin (1990).

DOI: 10.1002/bbpc.19930970725

Google Scholar

[9] R. Staskunaite and H. Bracht, private communication.

Google Scholar

[10] J.E. KellyIII, J.F. Cordaro, and M. Tomozawa: J. Non-Crystalline solids Vol. 41 (1980), p.47.

Google Scholar

[11] S. Voss, A.W. Imre, and H. Mehrer: Phys. Chem. Chem. Phys. Vol. 6 (2004), p.3669.

Google Scholar

[12] B. Roling, A. Happe, M.D. Ingram, and K. Funke: J. Phys. Chem. Vol. B 103 (1999), p.4122.

Google Scholar

[13] F. Berkemeier, S. Voss, A.W. Imre, and H. Mehrer: to be published 10-23 10-21 10-19 10-17.

Google Scholar

[12] 5 13 13. 5 14 14. 5 15 800 750 700 Natrup und Bracht.

Google Scholar

[28] 6% CaO.

Google Scholar

[14] 3% Na2O Natrup et al.

Google Scholar

[42] 9% CaO 0 & 4. 6% Na2O Standard-Glas II.

Google Scholar

[10] 63% CaO.

Google Scholar

[5] 01%MgO.

Google Scholar

[13] 19% Na2O Standard-Glas I.

Google Scholar

[7] 22% CaO.

Google Scholar

[6] 24% MgO.

Google Scholar

[14] 52% Na2O Frischat et al.

Google Scholar

[10] 7% CaO.

Google Scholar

[15] 5% Na2O T-1 / 10 -4 K-1 DCa / m 2 s-1 T / K Fig. 5b: Comparison of the 45Ca diffusivity in various soda-lime glasses. * 10-17 10-15 10-13 10-11 10 12 14 16 18 20 22 1000 800 700 600 500 Standard-Glas II.

Google Scholar

[10] 63% CaO (5. 01% MgO).

Google Scholar

[13] 19% Na2O Frischat et al.

Google Scholar

[10] 7% CaO.

Google Scholar

[15] 5% Na2O Standard-Glas I.

Google Scholar

[7] 22% CaO (6. 24% MgO).

Google Scholar

[14] 52% Na2O Williams et al.

Google Scholar

[11] 9% CaO.

Google Scholar

[15] 9% Na2O Terai et al.

Google Scholar

[9] 96% CaO.

Google Scholar

[19] 96% Na2O T-1 / 10 -4 K-1 DNa / m 2 s-1 T / K Fig. 5a: Comparison of the 22Na diffusivity in various soda-lime glasses.

Google Scholar