Defects and Diffusion in d-AlNiCo-Quasicrystals - Application of Mechanical Spectroscopy

Article Preview

Abstract:

Mechanical loss (internal friction) measurements were applied to polycrystalline d- AlNiCo quasicrystals for compositions ranging from Al72.8Ni7.5Co19.7 to Al71.1Ni18Co10.9 and to an Al71.3Ni13.4Co15.3 mono-quasicrystal The measurements were carried out in the temperature range from 290 K up to 1220 K for measuring frequencies between 0.1Hz and 10 kHz. A loss maximum of Debye type is observed at ≈ 700 K (2Hz) for both the I-phase and the bCo-phase, which is attributed to local rearrangement of point defects. The activation enthalpy of the peak of H = 1.9 - 2.4 eV is in the range of values obtained from tracer diffusion experiments. This indicates that local defect rearrangement and self diffusion are governed by the same atomic diffusion process.. A high temperature viscoelastic damping background is only observed in polycrystalline samples with H = 2.4 – 3 eV. The background is assigned to viscolealastic relaxation based on intergranular diffusion.

You might also be interested in these eBooks

Info:

Periodical:

Defect and Diffusion Forum (Volumes 237-240)

Pages:

322-327

Citation:

Online since:

April 2005

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2005 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] A.S. Nowick, and B.S. Berry: Anelastic Relaxation in Crystalline Solids (Academic Press, New York etc. 1972).

Google Scholar

[2] M. Weller: Point defect relaxations, Mechanical Spectroscopy Q -1 2001, R. Schaller, G. Fantozzi, and G. Gremaud eds., Mater. Sci. Forum Vols. 366-368 (2001), 95-137.

Google Scholar

[3] C. Wert: in M. Weller: Point defect relaxations, Mater. Sci. Forum Vols. 366-368 (2001), pp.124-129.

Google Scholar

[4] M. Weller: J. Phys. (Paris) IV, Vol. 6, C8 (1996), 63.

Google Scholar

[5] J. Janot: Quasicrystals: a primer (Clarendon Press, Oxford, 1994).

Google Scholar

[6] Quasicrystals, ed. by H. -R. Trebin (Wiley-VCH; Weinheim 2003).

Google Scholar

[7] Th. Zumkley, H. Mehrer, K. Freitag, M. Wollgarten, N. Tamura, and K. Urban: Phys. Rev. B54 (1996) R6815.

Google Scholar

[8] R. Blüher, P. Scharwaechter, W. Frank, and H. Kronmüller: Phys. Rev. Lett. Vol. 80 (1998) 1014.

Google Scholar

[9] C. Khoukaz, R. Galler, M. Feuerbacher, H. Mehrer: Def. Diff. Forum Vols. 194-199 (2001) 873-882.

DOI: 10.4028/www.scientific.net/ddf.194-199.873

Google Scholar

[10] M. Feuerbacher, M. Weller, J. Diehl, and K. Urban: Phil. Mag. Lett. vol. 74 (1996) 81.

Google Scholar

[11] M. Weller, B. Damson, Mechanical spectroscopy of quasicrystals, in.

Google Scholar

[6] p.539.

Google Scholar

[12] S. Ritsch, C. Beeli, H. -U. Nissen, T. Gödecke, M. Scheffer, and R. Lück: Phil. Mag. Lett. Vol. 78 (1998) 67.

Google Scholar

[13] C. Soltman, C. Beeli, R. Lück, W. Gander: J. Appl. Cryst. Vol. 36 (2003) 1030.

Google Scholar

[14] M. Weller: J. Phys. IV (Paris) Vol. 5 (1996) C7-199.

Google Scholar

[15] M. Weller, and E. Török: J. Phys. (Paris) Vol. 48 (1987) C8-371.

Google Scholar

[16] M. Weller, A. Chatterjee, G. Haneczok, E. Arzt, F. Appel, H. Clemens: Z. Metallkd. Vol. 92 (2001) 1099.

Google Scholar

[17] M. Weller, M. Hirscher, E. Schweizer, H. Kronmüller: J. Phys. (Paris), Vol. 6(1996) C8-231.

Google Scholar

[18] A. Lakki, R. Herzog, M. Weller, H. Schubert, C. Reetz, O. Görke, M. Kilo, G. Borchardt: J. Europ. Ceram. Soc., Vol. 20 (2000) 285.

DOI: 10.1016/s0955-2219(99)00162-4

Google Scholar

[19] H. Mehrer, R. Galler, J. Alloys and Comp. Vol. 342 (2002) 296.

Google Scholar

[20] M. Mehrer, R. Galler, W. Frank, R. Blüher, A. Strohmer, Diffusion in Quasicrystals, in.

Google Scholar

[6] p.312.

Google Scholar

[21] M. Weller, B. Damson, A. Lakki: J. Alloys and Comp. 310 (2000) 47.

Google Scholar