Diffusion of Nb in Nb-H Alloys

Article Preview

Abstract:

Self-diffusion coefficient of 95Nb in NbHx alloys (x=0.05,0.25 and 0.3) has been determined in the temperature range from 823 to 1323 K by using a serial sputter-microsectioning technique. The self-diffusion coefficient of Nb in the NbHx alloys are larger than that in Nb, suggesting that vacancies are formed by hydrogen dissolution, that is, the formation of hydrogen-induced vacancies. The value of the pre-exponential factor for the Nb diffusion in the NbH0.05 alloy is five times larger than that in Nb, while the difference in the activation energies between the NbH0.05 alloy and pure Nb is small. The self-diffusion enhancement in the NbH0.05 alloy is mainly caused by lowering in vibrational frequencies of atoms in the immediate neighborhood of hydrogen-induced vacancies.

You might also be interested in these eBooks

Info:

Periodical:

Defect and Diffusion Forum (Volumes 237-240)

Pages:

346-351

Citation:

Online since:

April 2005

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2005 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] P. Shewmon: Diffusion in Solids 2nd ed. (TMS, Pa., 1989), p.84.

Google Scholar

[2] E. Hayashi, Y. Kurokawa, Y. Fukai: Phys. Rev. Lett. Vol. 80 (1998), p.5588.

Google Scholar

[3] Y. Yamazaki, H. Kakuta, M. Okada, Y. Iijima: Defect Diff. Forum Vol. 194-199 (2001), p.1069.

Google Scholar

[4] Y. Yamazaki, Y. Iijima, M. Okada: Acta Mater. Vol. 52 (2004), p.1247.

Google Scholar

[5] Y. Yamazaki, Y. Iijima, M. Okada: Phil. Mag. Lett. Vol. 84 (2004), p.165.

Google Scholar

[6] T.B. Massalski, H. Okamoto, P.R. Subramanian, L. Kacprzak: Binary alloy phase diagrams 2nd. (ASM International, 1990), p.1442.

Google Scholar

[7] W.M. Albrecht, W.D. Goode, M.W. Mallet: J. Electrochem. Soc. Vol. 106 (1959), p.981.

Google Scholar

[8] H. Koike, Y. Shizuku, A. Yazaki, Y. Fukai: J. Phys. Condens. Mat. Vol. 16 (2004), p.1335.

Google Scholar

[9] T.S. Lundy, F.R. Winslow, R.E. Pawel, C.J. McHargue: Trans. AIME Vol. 233 (1965), p.1533.

Google Scholar

[10] D. Ablitzer: Phil. Mag. Vol. 35 (1977), p.1239.

Google Scholar

[11] R.E. Einziger, J.N. Mundy, H.A. Hoff: Phys. Rev. B Vol. 17 (1978), p.440.

Google Scholar

[12] W. Bussmann, C. Herzig, H.A. Hoffand, J.N. Mundy: Phys. Rev. B Vol. 23 (1981), p.6216.

Google Scholar

[13] Y. Iijima, K. Yamada, H. Katoh, J.K. Kim, K. Hirano: Proceedings of 13th Symposium on Ion Sources and Ion-assisted Techniques, Ionics, Takagi T, ed. (The Ion Engineering Society of Japan; Tokyo: 1990), p.179.

Google Scholar

[14] P. Shewmon: Diffusion in Solids 2nd ed. (TMS, Pa., 1989), p.14.

Google Scholar

[15] R.J. Walter, W.T. Chandler: Trans. Met. Soc. AIME Vol. 233 (1965), p.762.

Google Scholar

[16] A. Seeger, H. Mehrer: Vacancies and Interstitials in Metals Seeger A, Schumacher D, Schilling W, Diehl J, editors. (North-Holland, Amsterdam, 1970), p.1.

Google Scholar

[17] P. Shewmon: Diffusion in Solids 2nd ed. (TMS, Pa., 1989), p.107.

Google Scholar

[18] C.P. Flynn: Point Defects and Diffusion Marshall W, Wilkinson DH, editors. (Oxford University Press, London, 1972), p.319.

Google Scholar

[19] H.B. Huntington, G.A. Shirn, E.S. Wajda: Phys. Rev. Vol. 99 (1955), p.1085.

Google Scholar