Sedimentation of Substitutional Solute Atoms in Condensed Matter: New Type of Diffusion

Article Preview

Abstract:

Ultra-strong gravitational field (Mega-gravity field) causes the sedimentation of even atoms (diffusion), and is expected to create a nonequilibrium crystal-chemical state in multi-component condensed matter. However, the materials science research under mega-gravity field has now remained as an unexploited field, while the sedimentation of molecules or polymer had been used in biochemistory. We presented a self-consistent diffusion equation for sedimentation of atoms in condensed matter. Next, we developed an ultracentrifuge apparatus to generate strong acceleration field of over 1 million (1x106) g at temperature range up to 〜300 °C, and, recently, succeeded in realization of the sedimentation of substitutional solute atoms in some alloys of Bi-Sb, In-Pb, Bi-Pb systems, etc. The diffusion coefficients in sedimentation on Bi-Sb alloy were estimated to be much greater than those at normal conditions by a factor of >20. It is suggested that the sedimentation of substitutional atoms in solids or liquids can be explained in a new type of diffusion, where the diffusion mechanism for substitutional solute atoms was yet unknown. In this article, the recent progress in the investigation of sedimentation of atoms under mega-gravity field is reviewed, and the diffusion mechanism is discussed. The application of the mega-gravity field is also discussed.

You might also be interested in these eBooks

Info:

Periodical:

Defect and Diffusion Forum (Volumes 237-240)

Pages:

30-37

Citation:

Online since:

April 2005

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2005 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] L. W. Barr, F. A. Smith, Phil. Mag. 20, 1293 (1969).

Google Scholar

[2] T. R. Anthony, Act. Met. 18, 877 (1970).

Google Scholar

[3] S. J. C. Rushbrook, L. W. Barr, J. Nucl. Materials 68/78, 556 (1978).

Google Scholar

[4] T. Mashimo: Phys. Rev. A38, 4149-4154 (1988).

Google Scholar

[5] T. Mashimo: Philos. Mag. A70, 739-760 (1994).

Google Scholar

[6] T. Mashimo, S. Okazaki, and S. Shibazaki: Rev. Sci. Instr. 67, 3170-3174 (1996).

Google Scholar

[7] T. Mashimo, X.S. Huang, T. Osakabe, M. Ono, M. Nishihara, H. Ihara, M. Sueyoshi, K. Shibasaki, S. Shibasaki, and N. Mori: Rev. Sci. Instr. 74, 160-163 (2003).

DOI: 10.1063/1.1527718

Google Scholar

[8] T. Mashimo, S. Okazaki, and S. Tashiro: Jpn. J. Appl. Phys. 36, L498-500 (1997).

Google Scholar

[9] T. Mashimo, T. Ikeda, and I. Minato: J. Appl. Phys. 90, 741-744 (2001).

Google Scholar

[10] M. Ono and T. Mashimo: Philos. Mag. A82, 591-600 (2002).

Google Scholar

[11] X. S. Huang, T. Mashimo, M. Ono, T. Tomita, T. Sawai, T. Osakabe, and N. Mori: Advances in Space Research, 32, 231-235 (2003).

DOI: 10.1016/s0273-1177(03)90256-0

Google Scholar

[12] X.S. Huang, T. Mashimo, T. Tomita, T. Sawai, T. Osakabe, N. Mori , J. Appl. Phys., in press.

Google Scholar

[13] T. Mashimo, M. Ono, T. Kinoshita, X.S. Huang, T. Osakabe, H. Yasuoka: Philos. Mag. Lett. 83, 687-690 (2003).

Google Scholar

[14] X.S. Huang, M. Ono, T. Kinoshita, H. Ueno, T. Osakabe, T. Mashimo, Trans. Mater. Res. Soc. of Jpn, 29, 3451-3453 (2004).

Google Scholar

[15] M. Nishihara, K. Teramoto, T. Sakurai, M. Takafuji, T. Mashimo, and H. Ihara, Polymer Journal, 35, 276-279 (2003).

DOI: 10.1295/polymj.35.276

Google Scholar