Diffusion in L10-Type Single Crystal TiAl and FePt Intermetallic Compounds

Article Preview

Abstract:

The diffusion coefficient of In in TiAl has been measured using ion implantation technique and secondary ion mass spectrometry. The diffusion coefficients of Fe and Pd in FePt have been measured at two compositions by radioactive tracer method. In order to clarify diffusion anisotropy, single crystal of each alloy was used. The In diffusion perpendicular to the [001] axis is faster than that parallel to the [001] axis. Such trend is similar to Ti diffusion previously measured in our group. The diffusion of Fe in FePt perpendicular to the [001] axis is faster than that parallel to the [001] axis at each composition, while the anisotropy of the Pd diffusion is different with composition. The predominant process of the diffusion in perpendicular to the [001] has been discussed on the basis of the expressions of the diffusion coefficients.

You might also be interested in these eBooks

Info:

Periodical:

Defect and Diffusion Forum (Volumes 237-240)

Pages:

7-18

Citation:

Online since:

April 2005

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2005 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] C. Herzig T. Przeorsky and Y. Mishin: Intermettalics 7 (1998), 389.

Google Scholar

[2] S. Kroll, N. A. Stolwijk, C. Herzig and H. Mehrer: Defect Diff. Forum 95-98 (1993), 865.

DOI: 10.4028/www.scientific.net/ddf.95-98.865

Google Scholar

[3] C. Herzig M. Friesel, D. Derdau and S. V. Divinski: Intermettalics 7 (1999), 1141.

Google Scholar

[4] Y. Mishin and C. Herzig: Acta mater. 48 (2000), 589.

Google Scholar

[5] Y. Iijima, C. G. Lee, S. E. Kim, Y. T. Lee and H. M. Kim: High Temp. Mater. Process. 18 (1999), 305.

Google Scholar

[6] T. Ikeda, H. Kadowaki, H. Nakajima, H. Inui and M. Yamaguchi: Mater. Sci. Eng. A 312 (2001), 155.

Google Scholar

[7] T. Ikeda, H. Kadowaki and H. Nakajima: Acta mater. 49 (2001), 3475.

Google Scholar

[8] J. Kucera and B. Million: Phys. Status. Solidi (a) 31 (1975), 275.

Google Scholar

[9] T. Ichitsubo, M. Nakamoto, K. Tanaka and M. Koiwa: Mater. Trans. JIM 39 (1998), 24.

Google Scholar

[10] P. Shewmon: Diffusion in Solids, (McGraw-Hill, New York, 1963), P. 32.

Google Scholar

[11] M. J. Elliot and W. Rostoker: Acta Metall. 2 (1954), 884.

Google Scholar

[12] D. Vujic, Z. Li and S. H. Whang: Metall. Trans. A 19 (1988), 2445.

Google Scholar

[13] Y. Shirai and M. Yamaguchi: Mater. Sci. Eng. A 152 (1992), 173.

Google Scholar

[14] U. Brossmann, R. Wrschum, K. A. Badura and H. -E. Schaefer: Phys. Rev. B 49 (1994), 6457.

Google Scholar

[15] C. L. Fu and M. H. Yoo: Intermetallics 1 (1993), 59.

Google Scholar

[16] K. A. Badura and H. -E. Schaefer: Z. Metallkd. 84 (1993), 405.

Google Scholar

[17] S. Raju, E. Mohandas and V. S. Raghunathan: Scripta Mater. 34 (1996), 585.

Google Scholar

[18] C. Woodward and S. Kajiwara: Acta Mater. 14 (1999), 3793.

Google Scholar

[19] Y. Song, Z. X. Guo and R. Yang: J. Light Metals 2 (2002), 115.

Google Scholar

[20] Y. Mishin: private communication (2002).

Google Scholar

[21] N. Terashita, Y. Nose, T. Ikeda, H. Nakajima, H. Inui and M. Yamaguchi: Mater. Lett. 57 (2003), 3357.

Google Scholar

[22] Y. Nose, N. Terashita, T. Ikeda and H. Nakajima: to be published.

Google Scholar

[23] T. Ikeda, H. Numakura, M. Koiwa: Acta Mater. 46 (1998), 6605; ibid. 47 (1999), (1993).

Google Scholar

[24] H. Numakura, T. Ikeda, M. Koiwa and A. Almazouzi: Philos. Mag. A 6 (1998), 1455.

Google Scholar