Interdiffusion Studies in Co-Fe-Ni Alloys

Article Preview

Abstract:

Interdiffusion in Co-Fe-Ni alloys was studied in 1373-1588 K temperature range. The Danielewski-Holly model was used for the description of the interdiffusion process in ternary Co- Fe-Ni diffusion couples both for the finite and infinite geometry. Using the inverse method the average intrinsic diffusivities of components in the Co-Fe-Ni system were calculated and compared with the results of the other authors. The activation energies of cobalt, iron and nickel intrinsic diffusion have been found in 1373-1588 K temperature range.

You might also be interested in these eBooks

Info:

Periodical:

Defect and Diffusion Forum (Volumes 237-240)

Pages:

408-413

Citation:

Online since:

April 2005

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2005 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] L.S. Darken: Trans. AIME Vol. 174 (1948), p.184.

Google Scholar

[2] K. Holly and M. Danielewski: Phys. Rev. B Vol. 50 (1994), p.13336.

Google Scholar

[3] M. Danielewski and R. Filipek: J. Comp. Chem. Vol. 17 No. 13 (1996), p.1497.

Google Scholar

[4] M. Danielewski, K. Holly and W. Krzyżański: Polish J. Chem. Vol. 68 (1994), p. (2031).

Google Scholar

[5] R. Filipek: Archives of Metallurgy and Materials Vol. 49 No. 2 (2004), p.201.

Google Scholar

[6] L. L. Lions, Quelques Methodes de Résolution des Problémes aux Limites Non Linéaires, Dunod, Paris, (1969).

DOI: 10.1007/bf02738151

Google Scholar

[7] P.E. Gill, W. Murray, N.H. Wyight: Practical optimalization, Academic Press, 1981, p.247.

Google Scholar

[8] J.A. Nelder, L. Mad: Computer Journal Vol. 7 (1965) , p.308.

Google Scholar

[9] S.N. Ghani: IEEE International Conference on Evolutionary Computations, Perth Western Australia, 1995, p.320.

Google Scholar

[10] J.P. Sabatier and A. Vignes: Mém. Sci. Rev. Métall. Vol. 64 (1967), p.225.

Google Scholar

[11] A. Vignes and J.P. Sabatier: Trans. AIME Vol. 245 (1969), p.1795.

Google Scholar

[12] J.S. Kirkaldy and J.E. Lane: Can. J. Phys. Vol. 44 (1966), p. (2059).

Google Scholar

[13] Ken-ichi Hirano, R.P. Agarwala, B.L. Averbach, M. Cohen: J. Appl. Phys. Vol. 33 (1962), p.3049.

Google Scholar

[14] J.I. Goldstein, R.E. Hanneman, R.E. Ogilvie: Trans. Metall. Soc. AIME Vol. 233 (1965), p.812.

Google Scholar

[15] E. Walsöe de Reca and C. Pampillo: Acta Metall. Vol. 15 (1967), p.1263.

Google Scholar

[16] T. Ustad and H. Sorum: phys. stat. sol. (a) Vol. 20 (1973), p.285.

Google Scholar

[17] B. Million, J. Kucera: Acta Metall. Vol. 17 (1969), p.339.

Google Scholar

[18] Yu.E. Ugaste, A.A. Kodentsov and F. van Loo: Phys. Met. Metallogr. Vol. 88 (6) (1999) , p.598.

Google Scholar

[19] J.S. Kirkaldy and D.J. Young, Diffusion in the Condensed State, The Institute of Metals, London, (1987).

Google Scholar

[20] A. Kohn, J. Levasseur, J. Philibert and M. Wanin: Acta Metall. Vol. 18 (1970) , p.163.

Google Scholar