Thermal Stability of NiAl-Base Coatings for High Temperature Application

Article Preview

Abstract:

Aluminide diffusion coatings act as a remedy against the aggressive environments in which modern aero-gas turbines operate. Platinum addition to basic aluminide coatings significantly improves the oxidation resistance of these coatings. The increase in operating temperatures of industrial energy systems and gas turbines, has led to the extensive use of coatings capable of providing improved service life. Interdiffusion plays a critical role in understanding the integrity of such coatings. The Danielewski-Holly model of interdiffusion which allows for the description of a wide range of processes (including processes stimulated by reactions at interfaces) is employed for studying of interdiffusion in the Pt-modified β-NiAl coatings. Using the inverse method the intrinsic diffusivities of Ni, Al and Pt were calculated. Such obtained diffusivities were subsequently used for modelling of thermal stability of Pt-modified aluminide coatings in air and in argon atmosphere.

You might also be interested in these eBooks

Info:

Periodical:

Defect and Diffusion Forum (Volumes 237-240)

Pages:

709-714

Citation:

Online since:

April 2005

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2005 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] R. Streiff: Journal de Physique IV. Colloque C9 Vol. 3 (1993), p.17.

Google Scholar

[2] T.N. Rhys-Jones: Corrosion Science Vol. 29 (1989), p.623.

Google Scholar

[3] W.Y. Chan, P.K. Datta et al, Environmental Effects on High Technology Materials (Proc. Polish-Japanese Symposium, Polish Academy of Science, Zakopane (1997), p.81.

Google Scholar

[4] G. Fisher, W.Y. Chan, P.K. Datta and J.S. Burnell-Gray: Plat. Metals Rev. Vol. 43 (1999), p.59.

Google Scholar

[5] G. Fisher, P.K. Datta, J.S. Burnell-Gray and W.Y. Chan: Surface Coating and Technology Vol. 110 (1998), p.24.

Google Scholar

[6] R. Bachorczyk, M. Danielewski, P.K. Datta and R. Filipek: J. Molecular Liquids Vol. 86 (2000), p.61.

DOI: 10.1016/s0167-7322(99)00125-7

Google Scholar

[7] R.W. Wing and E.R. McGill: Plat. Metals Rev. Vol. 3 (1981), p.94.

Google Scholar

[8] S. Datta, R. Filipek and M. Danielewski: Defect and Diffusion Forum Vol. 203-205 (2002), p.47.

DOI: 10.4028/www.scientific.net/ddf.203-205.47

Google Scholar

[9] R. Filipek, P.K. Datta, M. Danielewski, L. Bednarz, R. Best and A. Rakowska: Defect and Diffusion Form Vol. 194-199 (2001), p.571.

DOI: 10.4028/www.scientific.net/ddf.194-199.571

Google Scholar

[10] K. Holly and M. Danielewski: Phys. Rev. B Vol. 50 (1994), p.13336.

Google Scholar

[11] L.S. Darken: Trans. AIME Vol. 174 (1948), p.184.

Google Scholar

[12] M. Danielewski, K. Holly and W. Krzyżański: Polish J. Chem. Vol. 68 (1994), p. (2031).

Google Scholar

[13] M. Danielewski and R. Filipek: J. Comp. Chem. Vol. 17 (1996), p.1497.

Google Scholar

[14] R. Filipek: J. Molecular Liquids Vol. 86 (2000), p.69.

Google Scholar

[15] J. Doychak, J.L. Smiale and C.A. Barret: The oxidation of Ni-rich Ni-Al Intermetallics, (Proc. Workshop on Oxidationof High Temperature Intermetallics, Cleveland, Ohio, September 22-23, 1988), p.41.

Google Scholar

[16] R. Filipek, Interdiffusion in Non-Ideal Multi-Component Systems (Proc. Int. Conf. Diffusion and Phase Transformation, Cherkasy, Ukraine, 2001), p.61.

Google Scholar

[17] M. Danielewski, R. Filipek, M. Pawełkiewicz, D. Klassek and K. Kurzydłowski: Modelling of Oxidation of Fe-Ni-Cr Alloys, Defect and Diffusion Forum, in press.

DOI: 10.4028/www.scientific.net/ddf.237-240.958

Google Scholar