Effect of Mechanoactivation on Interfacial Interaction in Metal/Oxide Systems

Article Preview

Abstract:

Properties of interfaces in solid state metal/oxide joints (Al/SiO2, Al/MgO, Al/glass, Mg/MgO, Mg/SiO2, In/glass etc.) are reported. The interfaces were formed by plastic deformation of metal on the oxide surface at room temperature. Their structure, chemical composition, and micromechanical properties were studied by the AFM, XRD, SIMS, optical microscopy, and precision microindentation techniques. A noticeable adhesion was observed for metals with high affinity for oxygen and only in the regions of the maximum shear stress. Formation of an interfacial reaction zone with an oxygen concentration gradient is detected. In this zone metals are nanostructured and noticeably hardened. The effect of mechanoactivation is considered as a result of physical and chemical interaction and formation of nanostructures in deformed metal/oxide systems.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

263-268

Citation:

Online since:

January 2006

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2006 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] F. Ernst: J. Mat. Sci. Eng. Vol. R14 (1995), p.97.

Google Scholar

[2] W. Lojkowski and H. -J. Fecht: Prog. Mater. Sci. Vol. 45 (2000), p.339.

Google Scholar

[3] S.B. Sinnott and E.C. Dickey: Mater. Sci. Eng. R Vol. R43 (2003), p.1.

Google Scholar

[4] M. Wagner, T. Wagner, D.L. Caroll, J. Marien, D.A. Bonnell and M. Rühle: MRS Bulletin Vol. 22 (1997), p.8.

Google Scholar

[5] T. Akatsu, N. Hosoda, T. Suga and M. Rühle: Mat. Sci. Forum Vol. 329 (1999), p.294.

Google Scholar

[6] F. Muktepavela, G. Bakradze, E. Tamanis, S. Stolyarova and N. Zaporina: Phys. Stat. Sol. Vol. 2 (2005), p.339.

DOI: 10.1002/pssc.200460179

Google Scholar

[7] F. Muktepavela, I. Manika and J. Kalnacs: Latv. J. Phys. Techn. Sci. Vol. 6 (2000), p.141.

Google Scholar

[8] F.P. Bailey and K.J. T Black: J. Mat. Sci. Vol. 13 (1978), p.1045.

Google Scholar

[9] Yu.F. Zhukovskii, E.A. Kotomin, P.W.M. Jacobs, A.M. Stoneham and J.H. Harding: J. Phys.: Condens. Matter. Vol. 12 (2000), p.55.

Google Scholar

[10] D. Duffy, J. Harding and A.M. Stoneham: J. Appl. Phys. Vol. 76 (1994), p.2791.

Google Scholar

[11] Ju.L. Krasulin: Interaction of Metal with Semiconductor in Solid State (Nauka, Moscow 1971).

Google Scholar

[12] G.P. Upit: Izvestia AN Latv. SSR, ser. phys-tech. Vol. 1 (1971), p.22 (in Russian).

Google Scholar

[13] F. Muktepavela and J. Maniks: Nanostruc. Mater. Vol. 10 (1998), p.479.

Google Scholar

[14] D.H. Buckley: Surface Effects in Adhesion Friction, Wear and Lubrication (Elsevier, Amsterdam 1981).

Google Scholar

[15] F. Muktepavela, I. Manika and V. Mironovs: Mat. Design Vol. 18 (1997), p.257.

Google Scholar

[16] J. Woirgard, T. Cabioc, J.P. Riviere and J.C. Dargenton: Surf. Coat. Tech. Vol. 100-101 (1998), p.128.

Google Scholar

[17] K. Sangwal, F. Sanz and P. Gorostiza: Surf. Sci. Vol. 424 (1999), p.139.

Google Scholar

[18] L. Paritskaya, Yu. Kaganovskii and V. Bogdanov: Sol. St. Phen. Vol. 101-102 (2005), p.123.

Google Scholar

[19] R.Z. Valiev, I.V. Alexandrov and R.K. Islamgaliev: in Nanostructured materials, G.M. Chow and N.I. Noskova, eds. (Kluwer Academic Publishers 1998), p.121.

Google Scholar

[20] E.P. Trifonova, V. Lasarova, L. Spassov and N. Efremova: Cryst. Res. Technol. Vol. 34 (1999), p.391.

DOI: 10.1002/(sici)1521-4079(199903)34:3<391::aid-crat391>3.0.co;2-m

Google Scholar