Diffusion in Bulk Glass Forming Alloys– from the Glass to the Equilibrium Melt

Article Preview

Abstract:

Since the discovery of bulk metallic glasses there has been considerable research effort on these systems, in particular with respect to mass transport. Now the undercooled melt between the melting temperature and the caloric glass transition temperature, which has not been accessible before due to the rapid onset of crystallization, can be investigated and theories can be tested. Here we report on radiotracer diffusion measurements in metallic bulk-glass-forming Pd-Cu-Ni-P alloys. Serial sectioning was performed by grinding and ion-beam sputtering. The time, temperature as well as the mass dependence, expressed in terms of the isotope effect E, of Co-diffusion were investigated. The Co isotope effect measurements, which have never been carried out near Tc in any material, show atomic transport up to the equilibrium melt to be far away from the hydrodynamic regime of uncorrelated binary collisions. In the glassy state as well as in the deeply supercooled state below the critical temperature Tc, where the mode coupling theory predicts a freezing-in of liquid-like motion, the experimentally determined very small isotope effects indicate a highly collective hopping mechanism involving some ten atoms. Below Tc the temperature dependence shows Arrhenius-type behavior with an effective activation enthalpy of 3.2 eV. Above Tc the onset of liquid-like motion is evidenced by a gradual drop of the effective activation energy and by the validity of the Stokes-Einstein equation, which is found to break down below Tc. Although having strong covalent bonding tendencies, Phosphorous diffusion is only slightly slower than Co diffusion, indicating that it does not determine the overall viscosity below Tc. The Stokes-Einstein equation is presently tested for other constituents of the alloy.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

109-118

Citation:

Online since:

September 2007

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2007 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] R. Hilzinger: High Frequency Magnetic Materials 1999, Santa Clara, CA, (1999).

Google Scholar

[2] A. Peker, and W. L. Johnson: Appl. Phys. Lett. 63 (1993) 2342.

Google Scholar

[3] T. Zhang, A. Inoue, and T. Masumoto: Mater. Trans. Japan. Inst. Metals 32 (1991) 1005.

Google Scholar

[4] Paul G. Shewmon: Diffusion in Solids (Warrendale, Pa. : Minerals, Metals & Materials Society, 1989. ).

Google Scholar

[5] F. Faupel, W. Frank, M. -P. Macht, H. Mehrer, V. Naundorf, K. Rätzke, H. R. Schober, S. K. Sharma, H. Teichler: Review of Modern Physics 75 (2003) 237.

DOI: 10.1103/revmodphys.75.237

Google Scholar

[6] A. Inoue, N. Nishiyama, H. Kimura: Materials Transaction, JIM 38 (1996) 179.

Google Scholar

[7] W. Götze, L. Sjögren: J. non-cryst. Solids 131 (1991) 153 and 161.

Google Scholar

[8] W. Götze: J. Phys. Cond. Matt. 11, (1999) A1.

Google Scholar

[9] H. Teichler: Def. Diff. Forum 143-147, (1997) 717.

Google Scholar

[10] C. Oligschleger and H. R. Schober: Phys. Rev. B 59, (1999) 811.

Google Scholar

[11] Nachtrieb, N.H., Ber. Bunsenges. Phys. Chem. 80 (1976) 678.

Google Scholar

[12] U. GeyerW. L. Johnson, S. Schneider, Y. Qiu, T. A. Tombrello, and M. -P. Macht, Appl. Phys. Lett. 69 (1996) 2492.

Google Scholar

[13] R. Richert, K. Samwer: New J. Physics 9 (2007).

Google Scholar

[14] J. A. Hodgdon and F. H. Stillinger: Phys. Rev. E 48 (1993) 207.

Google Scholar

[15] G. Tarjus and D. Kivelson: J. Chem. Phys. 8 (1995) 103.

Google Scholar

[16] S. Swallen, P. Vonvallet, R. McMahon and M. Ediger: Phys. Rev. Lett. 90, (2003) 15901.

Google Scholar

[17] . Bordat, F. Affouard, M. Descamps and F. Müller-Plathe: J. Phys.: Condens. Matter 15, (2003) 5397.

Google Scholar

[18] I. -R. Lu, G. P. Görler, H. J. Fecht, and R. Willnecker: J. Non-Cryst. Solids 312-314, (2002) 547.

Google Scholar

[19] H. Haumesser, J. Bancillon, M. Daniel, J. P. Garandet, J. C. Barbe, and N. Kernevez: Int. J. Thermophys. 23, (2002) 1217.

Google Scholar

[20] A. Meyer: Phys. Rev B 66, (2002) 134205.

Google Scholar

[21] F. Faupel, P. W. Hüppe, K. Rätzke, R. Willecke, and T. Hehenkamp: J. Vac. Sci. Technol. A 10, (1992) 92.

Google Scholar

[22] V. Zöllmer, K. Rätzke, and F. Faupel: Journal of Materials Research 18 (2003) 2688.

Google Scholar

[23] J. Schroers, W.L. Johnson,: Appl. Phys. Lett. 77 (2000) 1158.

Google Scholar

[24] A. Bartsch, K. Rätzke, F. Faupel, A. Meyer: Appl. Phys. Lett. 89 (2006) 121917.

Google Scholar

[25] H. Ehmler, A. Rehmet, K. Rätzke, and F. Faupel: Def. Diff. Forum 203-205, (2002) 147.

DOI: 10.4028/www.scientific.net/ddf.203-205.147

Google Scholar

[26] H. Ehmler, A. Heesemann, K. Rätzke, and F. Faupel: Phys. Rev. Lett. 80, (1998) 4919.

DOI: 10.1103/physrevlett.80.4919

Google Scholar

[27] A. Heesemann, K. Rätzke, V. Zöllmer, and F. Faupel: N. J. Phys. 3, (2001) 1. 1.

Google Scholar

[28] V. Zöllmer, K. Rätzke, F. Faupel, A. Rehmet, and U. Geyer: Phys. Rev. B 65, (R) (2002) 220201.

Google Scholar

[29] V. Zöllmer, A. Meyer, K. Rätzke, F. Faupel: Phys. Rev. Lett., 92, (2003) 195502-1.

Google Scholar

[30] V. Zöllmer, K. Rätzke, and F. Faupel: Journal of Materials Research 18 (2003) 2688.

Google Scholar

[31] T. Zumkley, V. Naundorf, M. -P. Macht, and G. Frohberg: Ann. de Chimie 27, (2002) 55.

Google Scholar

[32] A. L. Greer: Nature 366, (1999) 303.

Google Scholar

[33] X. -P. Tang, U. Geyer, R. Busch, W. L. Johnson, and Y. Wu: Nature 402, (1999) 160.

Google Scholar

[34] U. Geyer, S. Schneider, W.L. Johnson, Y. Qiu, T. A. Tombrello, and M. -P. Macht: Phys. Rev. Lett. 75, (1995) 2364.

Google Scholar

[35] H. Teichler: Phys. Rev. B 59 (1999) 8473.

Google Scholar

[36] H.R. Schober: Sol. State Comm. 119, (2001), 73.

Google Scholar

[37] W. Götze and L. Sjögren: Rep. Progr. Phys. 55, (1992) 241.

Google Scholar

[38] W. Götze and L. Sjögren: Transp. Theory Statist. Phys. 24, (1995) 801.

Google Scholar

[39] G. Frohberg, K. -H. Kraatz, and H. Wever: Mat. Sci. Forum, 15-18 (1987) 529.

Google Scholar

[40] Y. Yamazaki, T. Nihei, J. Koike and T. Ohtsuki: Proc. 1st int. Conf. Diffusion in Solids and Liquids (2005) 831.

Google Scholar

[41] H. Nakajima, T. Kojima, T. Zumkley, N. Nishiyama and A. Inoue: Proc. Int. Conf. Solid-Solid Phase Transformation 12, (1999) 441.

Google Scholar

[42] A. Meyer, W. Petry, M. Koza, M. -P. Macht: Appl. Phys. Lett. 83, (2003) 3894.

Google Scholar