The Influence of Solid State Diffusion on Microstructural Development during Solidification

Abstract:

Article Preview

The primary factors that effect solid state diffusion during solidification are described and binary solute redistribution equations that permit estimation of the significance of solid state diffusion are discussed. Model calculations suggest that solid state diffusion of substitutional alloying elements in FCC alloys is insignificant under most processing conditions, while that of interstitial alloying elements is likely to be complete. Experimental data that supports these results are presented. Several cases that highlight the practical importance of microsegregation on performance of engineering alloys are described as well as methods for avoiding or minimizing microsegregation for improved properties. A solute redistribution model for handling the limiting cases of solute diffusion in ternary alloys is presented and model calculations are reviewed to reveal the strong influence diffusion can have on the solidification path and resultant microstructure.

Info:

Periodical:

Edited by:

Prof. Yong Ho Sohn, C. Campbell, D. Lewis and Afina Lupulescu

Pages:

157-169

DOI:

10.4028/www.scientific.net/DDF.266.157

Citation:

J.N. DuPont "The Influence of Solid State Diffusion on Microstructural Development during Solidification", Defect and Diffusion Forum, Vol. 266, pp. 157-169, 2007

Online since:

September 2007

Authors:

Export:

Price:

$35.00

[1] W.J. Boettinger, S.R. Coriell, A. L Greer, A. Karma, W. Kurz, M. Rappaz, and R. Trivedi, Acta Materialia, 2000; 48: p.43.

DOI: 10.1016/s1359-6454(99)00287-6

[2] R. Trivedi and W. Kurz, International Materials Reviews, 1994; 39: p.49.

[3] V. Laxmanan, Acta Materialia, 1985; 33: p.1023.

[4] T.P. Battle, International Materials Reviews, 1992; 37: p.249.

[5] E. Scheil, Z Metallk, 1942; 34: p.70.

[6] H.D. Brody and M.C. Flemings, Transactions of AIME, 1966; 236: p.615.

[7] S.W. Banovic, J.N. DuPont, and A.R. Marder, Science & Technology of Welding and Joining, 2003; 6: p.374.

[8] J.N. DuPont, C.V. Robino, and A.R. Marder, Metallurgical and Material Transactions A, 1998; 29A: p.2797.

[9] M.J. Cieslak, T.J. Headley, T. Kollie, and A.D. Romig, Metallurgical Transactions A, 1988, 19: p.2319.

[10] J.N. DuPont, C.V. Robino, A.R. Marder, M.R. Notis, and J.R. Michael, Metallurgical and Material Transactions A, 1988; 29: p.2785.

[11] H. Joo, and H. Takeuchi, Tokai Daigaku Kiyo, 1994; 34: p.203.

[12] U. Heubner, M. Kohler, and B. Prinz, Superalloys 1988, 1988, ASM International, Materials Park, OH, p.437.

[13] A. Garner, Metal Progress, 1985, April, p.31.

[14] K.R. Luer, J.N. DuPont, A.R. Marder, and C.K. Skelonis, Materials at High Temperatures, 2001; 18: p.11.

[15] R. Rosenthal and D.R.F. West, Materials Science and Technology, 1999; 15: p.1387.

[16] T.W. Clyne and W. Kurz, Metallurgical Transactions A, 1981; 12A: p.965.

[17] S.W. Banovic, J.N. DuPont, and A.R. Marder, Welding Journal, 1999; 78: p. 23s. 18. T.D. Anderson, M.J. Perricone, J.N. DuPont, A.R. Marder, Phase Transformations and Microstructural Evolution of Mo-bearing Stainless Steels, accepted for publication in Metallurgical and Materials Transactions A.

DOI: 10.1007/s11661-007-9211-9

[19] S. Kobayashi, Journal of Crystal Growth, 1988; 88: p.87.

[20] K.S. Yeum, V. Laxmanan, and D.R. Poirier, Metallurgical and Materials Transactions A, 20: p.2847.

[21] J.N. DuPont, C.V. Robino, and A.R. Marder, Acta Materialia, 1998, 46; p.4781.

[22] J.N. DuPont, Metallurgical and Materials Transactions A, 2006, 37: p. (1937).

[23] Saunders, N. 2001, Fe-Data Thermodynamic Database 3. 0, Thermotech, Ltd., The Surrey Research Park, Guildford, UK, Thermotech, Ltd.

[24] Sundman, B. 2001, Thermo-Calc. S-100 44[N]., Thermotech, Ltd., The Surrey Research Park, Stockholm, Sweden.

[25] M.J. Perricone and J.N. DuPont, Metallurgical and Materials Transactions A, 2006; 37, p.1267.

In order to see related information, you need to Login.