3D Monte Carlo Simulation of Phase Separation Kinetics in a Binary Metallic Alloy with Vacancy Mediated Diffusion: Effect of Initial Supersaturation

Article Preview

Abstract:

The process of phase formation at the initial stage of the reaction diffusion and growth of a new phase particles - at the atomic level by applying the Monte-Carlo simulation of the crystalline nanoalloy is presented. The influence of initial composition on the kinetics of phase separation in a binary alloy with the fcc crystal lattice has been analyzed in detail. The dependences of various parameters of tire process - the average size of new-phase particles, volume of new-phase clusters, size distribution function, dispersion and supersaturation - on time have been calculated. The obtained results demonstrate the opportunity of a three-stage separation process at low initial supersaturation values and a two-stage separation at large initial supersaturation values.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

161-166

Citation:

Online since:

April 2008

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2008 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation: