Three-Dimensional Double Diffusion Mixed Convection in Rectangular Channel Filled with Porous Medium

Article Preview

Abstract:

This paper presents a numerical study of mixed convection heat and mass transfer in horizontal rectangular channels partially filled with porous medium. The main contribution of this research is to characterize how the porous block will create a heterogeneity that will induce a change on the Poiseuille-Rayleigh-Benard (PRB) fluid circulation dynamics. For a broad range of dimensionless parameters, which control the mixed convection, we show that the effect of the insertion of the porous block changes the thermal and solutal boundary layers; we find that the exchanges are intensified near the sidewalls in the porous region compared to upstream and downstream of the porous medium; and inversely in the core region. We describe, also, the onset of the longitudinal rolls at both upstream and downstream of the porous region. And finally, we compared the heat transfer, for different positioning of the porous medium with the purely fluid mixed convection.

You might also be interested in these eBooks

Info:

Periodical:

Defect and Diffusion Forum (Volumes 297-301)

Pages:

1010-1015

Citation:

Online since:

April 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2010 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] X. Nicolas: Int. J. Thermal Sciences Vol. 41 (2002), p.961.

Google Scholar

[2] J. Shahda, U. Narusawa: Int. J. Heat Mass Tran. Vol. 32 (1997), p.213.

Google Scholar

[3] S.W. Chen, D.S. Shu, J.T. Lir, T.F. Lin: Int. J. Heat Mass Tran. Vol. 49 (2006), p.3655.

Google Scholar

[4] D.A. Nield, A. Bejan: Convection in porous media (Third edition, Springer, 2006).

Google Scholar

[5] U. Narusawa: Int. J. Por. Media. Vol. 25 (1998), p.449.

Google Scholar

[6] K.C. Cheng, S.W. Hong, G.J. Hwang: Int. J. Heat Mass Tran. Vol. 15 (1972), p.1819.

Google Scholar

[7] P. Talukdar, C.R. Iskra, C.J. Simonson: Int. J. Heat Mass Tran. Vol. 51 (2008), p.3091.

Google Scholar

[8] J.N. Lin, F.C. Chou: Can. J. Chem. Engng. Vol. 67 (1989), p.361.

Google Scholar

[9] J.N. Lin, F.C. Chou, P.Y. Tzeng: Int. J. Heat Fluid Flow Vol. 12 (1991), p.218.

Google Scholar

[10] M.M. Abou-Ellail: J. Heat Transfer Vol. 105 (1983), p.924.

Google Scholar

[11] F. Moukalled, M. Darwish, S. Acharya: Int. J. Heat Mass Tran. Vol. 41 (1998), p.719.

Google Scholar

[12] H. Ben Hmed, R. Bennacer: J. Heat Transfer Vol. 105 (1983) p.924.

Google Scholar

[13] A. Benderradji, A. Haddad, R. Taher, et al.: Int. J. Heat Mass Tran. Vol. 44 (2008), p.1465.

Google Scholar

[14] J.N. Lin, F.C. Chou, W.M. Yan, P.Y. Tzeng: Can. J. Chem. Engng Vol. 79 (1992), p.681.

Google Scholar

[15] O. Rahli, K. Bouhadef, R. Bennacer, D.E. Ameziani: DDF Vol. 79 (2009), p.297.

Google Scholar

[16] F.C. Chou, C.J. Cheng, W.Y. Lien: Int. J. Heat Mass Tran. Vol. 35 (1992), p.1197.

Google Scholar

[17] J. Llgostera, J.R. Figueiredo: J. Por. Media. Vol. 3 (2000), p.139.

Google Scholar

[18] A. Postelniu: J. Por. Media. Vol. 10 (2007), p.105.

Google Scholar

[19] S. Jaballah, R. Bennacer, H. Sammouda, A. Belghith: J. Por. Media. Vol. 11 (2008), p.90.

Google Scholar

[20] A. Delache, M.N. Ouarzazi: Int. J. Thermal Sciences Vol. 47 (2008), p.709.

Google Scholar