Corrosion Resistance of Porous 316L Implant Steel

Article Preview

Abstract:

Porous metallic alloys are reported as the prospective biomaterials for restorative medicine due to their unmatched features guaranteeing fixation of prosthesis. Numbers of research are focused on functional properties of porous materials. Especially corrosion behavior seems to differ from the analogue bulk materials. The aim of presented work was to study corrosion resistance of sintered porous implant steel 316L. Samples with porosity in range of 26-40% were fabricated by means of the PM method. Corrosion tests were carried by using an automatic polarization unit Atlas-Solich98 in 0.9% NaCl water solution. The experiments conducted confirm that porous 316 stainless steel possesses a distinct passivation range. The obtained results showed the effect of pore morphology on corrosion resistance of sinters.

You might also be interested in these eBooks

Info:

Periodical:

Defect and Diffusion Forum (Volumes 297-301)

Pages:

1059-1064

Citation:

Online since:

April 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2010 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] T.P. Schmalzried, M. Jasty, W.H. Harris: J. Bone Jt. Surg. Vol. 74-A (1992), p.849.

Google Scholar

[2] G. Ryan, A. Pandit, D.P. Apatsidis: Biomaterials Vol. 27 (2006), p.2651.

Google Scholar

[3] M. Thieme, K.P. Wieters, F. Bergner, D. Scharnweber, H. Worch, J. Ndop: Mater. Sci. Forum Vol. 38 (1999), p.374.

DOI: 10.4028/www.scientific.net/msf.308-311.374

Google Scholar

[4] F. Burny, M. Donkerwolcke, D. Muster: Mat. Sci. Eng. A Vol. 199 (1995), p.53.

Google Scholar

[5] H. K Uthoff, M. Finneagan: J Bone Joint Surg. Vol. 65B (1983), p.66.

Google Scholar

[6] C.E. Wen, M. Mabuchi, Y. Yamada, K. Shimojima, Y. Chino, T. Asahina: Scripta Mater. Vol. 45 (2001), p.1147.

DOI: 10.1016/s1359-6462(01)01132-0

Google Scholar

[7] P. Beiss, M. Dalgic: Materials Chemistry and Phisycs Vol. 67 (2001), p.37.

Google Scholar

[8] N. Chawla, X. Deng: Materials Science and Engineering A Vol. 390 (2005), p.98.

Google Scholar

[9] I.H. Oh, N. Nomura, N. Masahashi, S. Hanada: Scripta Materialia Vol. 49 (2003), p.1197.

Google Scholar

[10] B.S. Becker, J.D. Bolton: J. Material Science: Materials in Medicine Vol. 8 (1997), p.793.

Google Scholar

[11] M. Grądzka-Dahlke, B. Hościło, B. Dąbrowski, J.R. Dąbrowski: Biomaterials Engineering R. 9 Vol. 58-60 (2006), p.109.

Google Scholar

[12] V.I. Itin, V.E. Gjunter, S.A. Shabalovskaya, R.L.C. Shachdeva: Materials Chracterisation Vol. 32 (1994), p.179.

Google Scholar

[13] E. Krasicka-Cydzik, Z. Oksiuta, J.R. Dąbrowski: Journal of Material Science: Materials in Medicine Vol. 16 (2005), p.197.

Google Scholar

[14] Y. -H. Li, G. -B. Rong, Y. -Y. Li: Materials Letters Vol. 57 (2002), p.448.

Google Scholar

[15] Y. -H. Li, G.B. Rao, G. -B. Rong, Y. -Y. Li: Materials Science and Engineering A Vol. 363 (2003), p.356.

Google Scholar

[16] K.H.W. Seah, R. Thampuran, X. Chen, S.H. Teoh: Corrosion Science Vol. 37 (1995), p.1333.

Google Scholar

[17] K. Alvarez, S.K. Hyun, H. Tsuchiya, S. Fujimoto, H. Nakajama: Corrosion Science Vol. 50 (2008), p.183.

Google Scholar

[18] K. Alvarez, S.K. Hyun, H. Tsuchiya, S. Fujimoto, H. Nakajama: Journal of Material Science: Materials in Medicine Vol. 19 (2008), p.3385.

Google Scholar

[19] M. Grądzka-Dahlke, J.R. Dąbrowski, B. Dąbrowski: Wear Vol. 263 (2007), p.1023.

DOI: 10.1016/j.wear.2007.01.119

Google Scholar

[20] M. Grądzka-Dahlke : J. Vibroengineering Vol. 9 (2007), p.96.

Google Scholar