Film Formation via Plasma Electrolyte Oxidation of Ti and Ti-5Mo-4V-3Al Alloy in High Alkaline Solutions

Article Preview

Abstract:

This work investigates the characteristics of oxide films formed on Ti and the Ti alloy through a plasma electrolyte oxidation (PEO) process in highly alkaline medium in the presence or absence of phosphate ions. The obtained coatings showed different characteristics when they formed in high alkaline phosphate solutions particularly was anatase for Ti and rutile/titanium phosphate for the Ti alloy layer. Films formed in aqueous solution without KOH caused a reduction in current density and also reduced the number of microarcs, while in electrolytes with high OH- concentration, the current was low and the density of sparks was significant.

You might also be interested in these eBooks

Info:

Periodical:

Defect and Diffusion Forum (Volumes 297-301)

Pages:

1167-1170

Citation:

Online since:

April 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2010 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Y. Han, S.H. Hong and K.W. Xu: Surf. Coat. Technol. Vol. 154 (2002), p.314.

Google Scholar

[2] Y. Wang, T. Lei, B. Jiang and L. Guo: Appl. Surf. Sci. Vol. 233 (2004), p.258.

Google Scholar

[3] W. Xue, Z. Deng, Y. Lai and R. Chen: J. Am. Ceram. Soc. Vol. 81 (1998), p.1365.

Google Scholar

[4] J.M. Wu, S. Hayakawa, K. Tsuru and A. Osaka: J. Am. Ceram. Soc. Vol. 87 (2004), p.1635.

Google Scholar

[5] W.H. Song, H.S. Ryu and S.H. Hong: J. Am. Ceram. Soc. Vol. 88 (2005), p.2642.

Google Scholar

[6] Z. Yao, Z. Jiang and X.H. Zhang: J. Am. Ceram. Soc. Vol. 89 (2006), p.2929.

Google Scholar

[7] Y.T. Sul: Biomaterials Vol. 24 (2003), p.3893.

Google Scholar

[8] C. Chen, Q. Dong, H. Yu, X. Wang and D. Wang: Adv. Eng. Mater. Vol. 8 (2006), p.754.

Google Scholar

[9] J. Baszkiewicz, D. Krupa, J. Mizera, J.W. Sobczak, A. Bilinski: Vacuum Vol. 78 (2005), p.143.

Google Scholar

[10] Y.K. Shin, W.S. Chae, Y.W. Song, Y.M. Sung: Electrochem. Commun. Vol. 8 (2006), p.465.

Google Scholar

[11] A.L. Yerokhin, X. Nie, A. Leyland, A. Matthews: Surf. Coat. Technol. Vol. 130 (2000), p.195.

Google Scholar

[12] Y.T. Sul, C.B. Johansson, Y. Jeong, T. Albrektsson: Med. Eng. Phys. Vol. 23 (2001), p.329.

Google Scholar

[13] A.L. Yerokhin, X. Nie, A. Leyland et al: Surf. Coat. Technol. Vol. 122 (1999), p.73.

Google Scholar

[14] E. Byon, Y. Jeong, A. Takeuchi et al.: Surf. Coat. Technol. Vol. 201 (2007), p.5651.

Google Scholar

[15] C.T. Wu and F.H. Lu: Surf. Coat. Technol. Vol. 199 (2005), p.225.

Google Scholar

[16] L.H. Li, Y.M. Kong, H.W. Kim, Y.W. Kim et al.: Biomaterials Vol. 25 (2004), p.2867.

Google Scholar

[17] I. Han, J.H. Choi, B.H. Zhao, H.K. Baik, I.S. Lee: Current Appl. Phys. Vol. 7S1 (2007), p. e23.

Google Scholar

[18] Y. Wang, B. Jiang, T. Leia and L Guo: Mater. Lett. Vol. 58 (2004), p. (1907).

Google Scholar