Natural Convection in Vertical Channels with Porous Media and Adiabatic Extensions

Article Preview

Abstract:

A numerical investigation on natural convection in air in a vertical heated channel, partially filled with porous medium, with adiabatic extensions downward and collinear the heated plates is accomplished. The fluid flow is assumed two-dimensional, laminar, steady state and incompressible. The porous material is considered as homogeneous and isotropic and the Brinkman-Forchheimer-extended Darcy model is considered. A finite-extension computational domain is employed to simulate the free-stream condition and allows to account for the diffusive effects and the numerical results are obtained using the finite volume method by FLUENT. Results in terms of wall temperature profiles are presented to evaluate the effects of the main thermal and geometrical parameters. The adiabatic extensions determine a wall temperature decrease and wall temperature decreases increasing Darcy number. In full filled heated channels wall temperature presents a significant increase for Darcy number decrease.

You might also be interested in these eBooks

Info:

Periodical:

Defect and Diffusion Forum (Volumes 297-301)

Pages:

1432-1438

Citation:

Online since:

April 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2010 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] D.A. Nield and A. Bejan: Convection in Porous Media (third ed., Springer, New York, 2006).

Google Scholar

[2] D.B. Ingham and I. Pop: Transport Phenomena in Porous Media (Pergamon, Oxford 2002).

Google Scholar

[3] K. Vafai: Handbook of Porous Media (Vol. II, Marcel Dekker, New York 2005).

Google Scholar

[4] A. Bejan, I. Dincer, S. Lorente, A. F. Miguel and A. H. Reis: Porous and Complex Flow Structures in Modern Technologies (Springer, New York 2004).

DOI: 10.1007/978-1-4757-4221-3

Google Scholar

[5] S. Hsiao, C. Chen and P. Cheng, P.: Int. J. Heat Mass Transfer Vol. 37 (1994), p.2193.

Google Scholar

[6] A. Merrikh and A. Mohamad: Int. J. Heat Mass Transfer Vol. 45 (2002), p.4305.

Google Scholar

[7] T. Nilsen and L. Storesletten: J. Heat Transfer Vol. 112 (1990), p.396.

Google Scholar

[8] M. Al-Nimr and O. Haddad: J. Porous Media Vol. 2 (1999), p.179.

Google Scholar

[9] A. F. Khadrawi and M. A. Al-Nimr: ASME, Fluids Eng. Div. Vol. FED-257 (2002), p.1293.

Google Scholar

[10] A. F. Khadrawi and M.A. Al-Nimr: J. Porous Media Vol. 6 (2003), p.59.

Google Scholar

[11] K. Slimi, L. Zili-Ghdira, S. Ben Nasrallah and A.A. Mohamad: Num. Heat Transf. Part A Vol. 45 (2004), p.451.

Google Scholar

[12] O.M. Haddad, M. Abuzaid and M Al-Nimr: Num. Heat Transf. Part A Vol. 48 (2005), p.693.

Google Scholar

[13] K. Slimi, A. Mhimid, M. Ben Salah, S. Ben Nasrallah, A.A. Mohamad and L. Storesletten: Num. Heat Transf. Part A Vol. 48 (2005), p.763.

DOI: 10.1080/10407780500196592

Google Scholar

[14] S. Kiwanand and M. Khodier: Heat Transfer Eng. Vol. 29 (1) (2008), p.67.

Google Scholar

[15] A. Bejan: Int. J. Heat Mass Transfer Vol. 47 (2004), p.3073.

Google Scholar

[16] K., Vafai and C. L. Tien: Int. J. Heat Mass Transf. Vol. 24 (1981), p.195.

Google Scholar

[17] S. Ergun: Chem. Engng. Proc. Vol. 48 (1952), p.89.

Google Scholar

[18] K. Vafai: J. Fluid Mech. Vol. 147 (1984), p.233.

Google Scholar

[19] A. Andreozzi and O. Manca: Int. J. Heat Fluid Flow Vol. 22 (2001), p.424.

Google Scholar

[20] Fluent Inc., Fluent 6. 3, User Manual (Fluent Inc., Lebanon NH 2006).

Google Scholar

[21] A. Andreozzi, B. Buonomo and O. Manca: Num. Heat Transf. Part A Vol. 47 (2005), p.741.

Google Scholar