Effect of Solid Thickness on Transient Heat Conduction in Workpieces Irradiated by a Moving Heat Source

Article Preview

Abstract:

In this paper a three dimensional conductive field is analyzed and solved by means of the COMSOL Multiphysics code. The investigated work-pieces are made up of a simple brick-type solid. A laser source with combined donut-Gaussian distributions is considered moving with a constant velocity along motion direction. The solid dimension along the motion direction is assumed to be infinite or semi-infinite, while finite width (2ly) and thickness (s) are considered. Thermal properties are considered temperature dependent and the materials are considered isotropic. Surface heat losses toward the ambient are taken into account. Results are presented in terms of profile temperature to evaluate the effect of solid thickness.

You might also be interested in these eBooks

Info:

Periodical:

Defect and Diffusion Forum (Volumes 297-301)

Pages:

1445-1450

Citation:

Online since:

April 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2010 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] I. Tanasawa, and N. Lior: Heat and Mass Transfer in Material Processing (Hemisphere, Washington D.C., US 1992).

Google Scholar

[2] R. Viskanta and T. L. Bergman, in: Handbook of Heat Transfer, Chap. 18, Heat Transfer in Material Processing, McGraw-Hill, New York (1998).

Google Scholar

[3] S. Z. Shuja, B. S. Yilbas and M. O. Budair: Numer. Heat Transfer A Vol. 33 (1998), p.315.

Google Scholar

[4] N. Bianco, O. Manca and S. Nardini: ASME HTD Vol. 369-6 (2001), p.11.

Google Scholar

[5] M. F. Modest and H. Abakians: J. Heat Transfer 108 (1986), p.597.

Google Scholar

[6] V. Shankar and D. Gnamamuthu: J. Therm. Heat Transfer Vol. 1 (1987), p.182.

Google Scholar

[7] J. C. Rozzi, F. E. Pfefferkon, F. P. Incropera and Y. C. Shin: J Heat Transfer Vol. 120 (1998), p.899.

Google Scholar

[8] J. C. Rozzi, F. P. Incropera and Y. C. Shin: J. Heat Transfer Vol. 120 (1998), p.907.

Google Scholar

[9] J. C. Rozzi, F. E. Pfefferkon, F. P. Incropera and Y. C. Shin: Int. J. Heat Mass Transfer Vol. 43 (2000), p.1409.

Google Scholar

[10] J. C. Rozzi, F. P. Incropera, and Y. C. Shin: Int. J. Heat Mass Transfer Vol. 43 (2000), p.1425.

Google Scholar

[11] Z. B. Hou and R. Komanduri: Int. J. Heat Mass Transfer Vol. 43 (2000), p.1679.

Google Scholar

[12] B. S. Yilbas, S. Z. Shuja and M. S. J. Hashmi: J. Mat. Proces. Tech. Vol. 136 (2003), p.12.

Google Scholar

[13] G. Gutierrez and J. G. Araya: Temperature Distribution in a Finite Solid due to a Moving Laser Beam, Proc. IMECE '03, IMECE2003-42545, 2003 ASME Int. Mech. Eng. Congr., Washington, D.C., November 15-21, (2003).

DOI: 10.1115/imece2003-42545

Google Scholar

[14] N. Bianco, O. Manca and V. Naso: . umerical analysis of transient temperature fields in solids by a moving heat source, HEFAT2004, 3rd Inte. Conf. on Heat Transfer, Fluid Mechanics and Thermodynamics, Paper n. BN2, Cape Town, South Africa, 21 - 24 June (2004).

Google Scholar

[15] N. Bianco, O. Manca and S. Nardini: Two dimensional transient analysis of temperature distribution in a solid irradiated by a Gaussian laser source, Proc. ESDA04, paper n. ESDA2004-58286 7TH Biennial Conf on Eng. Systems Design and Analysis, Manchester, United Kingdom, July 19-22, (2004).

DOI: 10.1115/esda2004-58286

Google Scholar

[16] N. Bianco, O. Manca, S. Nardini and S. Tamburrino: Diffusion in Solids and Liquids IV. Defect and Diffusion Forum Vols. 283-286 (2009), p.358.

DOI: 10.4028/www.scientific.net/ddf.283-286.358

Google Scholar

[17] D. Rosenthal: Trans. ASME Vol. 68 (1946), p.3515.

Google Scholar

[18] Metals Handbook, 1981, 9th Ed. ASM, Metal Park, OH.

Google Scholar