Heat Diffusion in Solidifying Alumina Splat Deposited on Solid Substrate under Plasma Sprayed Conditions: Application to Coating Formation

Article Preview

Abstract:

A plasma-sprayed coating is built up by the layering of individual splats. The latter are formed by spreading and solidification of molten particles sprayed onto a solid substrate. The coating properties depend on its microstructure and the quality of contact between the splats and the underlying layer and between the piled-up splats. This work deals with a 1D model of heat transfer between plasma-sprayed alumina splat and smooth substrate. The model is based on heat diffusion in the solidifying splat and substrate and includes undercooling phenomenon, heterogeneous nucleation and crystal growth kinetics. It assumes that splat spreading and solidification are two independent processes. The model predicts splat cooling and solidification taking into account, as far as possible, the in-flight particle properties drawn from the literature in order to study their effect on splat thermal history. The effect of the quality of contact between the splats as well as the already-deposited and solidified layer thickness on the grain size distribution and front solidification velocity is investigated.

You might also be interested in these eBooks

Info:

Periodical:

Defect and Diffusion Forum (Volumes 297-301)

Pages:

46-51

Citation:

Online since:

April 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2010 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] P. Fauchais, M. Fukumoto, A. Vardelle, M. Vardelle: J. Therm. Spray Technol. Vol. 13 (2004), p.337.

DOI: 10.1361/10599630419670

Google Scholar

[2] L. Bianchi, A.C. Leger, M. Vardelle, A. Vardelle and P. Fauchais: Thin Solid Films Vol. 305 (1997), p.35.

DOI: 10.1016/s0040-6090(97)80005-3

Google Scholar

[3] C. Escure, M. Vardelle and P. Fauchais: Plasma Chem. Plasma P. Vol. 3 (2003), p.291.

Google Scholar

[4] J. Cedelle, M. Vardelle, P. Fauchais: Surf. Coat. Tech. Vol. 201 (2006), p.1373.

Google Scholar

[5] M. Fukumoto, M. Shiba, H. Haji, T. Yasui: Pure Appl. Chem. Vol. 77 (2005), p.429.

Google Scholar

[6] M. Bussmann, S.D. Aziz, S. Chandra, and J. Mostaghimi: Thermal Spray: Meeting the Challenges of the 21st Century, C. Coddet (ed. ), ASM International, Materials Park, OH, (1998), p.413.

Google Scholar

[7] R. Dhiman, A. McDonald, and S. Chandra: Surf. Coat. Tech. Vol. 201 (2007), p.7789.

Google Scholar

[8] J. Mostaghimi, S. Chandra, R. Ghafouri-Azar, A. Dolatabati: Surf. Coat. Tech. Vol. 163-164 (2003), p.1.

Google Scholar

[9] C.G. Levi, V. Jayaram, J.J. Valencia, R. Mehrabian: J. Mat. Res. Vol. 3 (1988), p.969.

Google Scholar

[10] R. Mcpherson: J. of Mat. Sci. Vol. 25 (1980), p.3677.

Google Scholar

[11] T. Chraska, A.H. King: Thin Solid Films Vol. 397 (2001), p.40.

Google Scholar

[12] T. Chraska, A.H. King: Thin Solid Films Vol. 397 (2001), p.30.

Google Scholar

[13] G. -X. Wang, V. Prasad, S. Sampath and H. Hermann: in Solidification, Marsh, S.P., et al. (Eds), The Minerals, Metals & Materials Society/AIME, (1998), p.485.

Google Scholar

[14] A. Vardelle, M. Vardelle, P. Fauchais, D. Gobin: Flash Reactions Processes, T.W. Davies Editor. Kluwer Acad. Publ. NATO Advanced Science Institute Series. Serie E, Vol. 282. (1995), p.95.

DOI: 10.1007/978-94-011-0309-1_4

Google Scholar

[15] N. J. Ruperti, D. Gobin, R. M. Cotta: 7th Latin-American Heat and Mass Transfer Conference - ENCIT 98 (Rio de Janeiro) (1998), p.659.

Google Scholar

[16] Y. Lahmar, A. Vardelle, P. Fauchais, D. Gobin: High Temp. Mater. P. Vol. 11-2 (2007), p.191.

Google Scholar

[17] Y. Mebdoua: Numerical study of the thermal phenomena controlling splat solidification under plasma spray conditions: Application to the coating formation, PhD thesis (2008), Limoges University.

Google Scholar