Thermal Conductivity and Thermal Expansion of Copper Matrix Composites Reinforced with High Modulus C Fibres

Article Preview

Abstract:

Copper matrix composite with pure copper matrix reinforced with high modulus carbon fibres Thornel K 1100 was prepared by gas pressure infiltration technique. As-received composite was subjected to thermal expansion and thermal conductivity measurements in longitudinal and transversal directions. Large anisotropy of properties as well as surprisingly good structural stability has been observed. The mean coefficients of thermal expansion as low as 0.8 x 10-6 K-1 in longitudinal and as high as 23.5 x 10-6 K-1 in transversal directions were determined, the thermal conductivities as high as 650 Wm-1K-1 in longitudinal direction and as low as 60.7 Wm-1K-1in transversal directions were measured.

You might also be interested in these eBooks

Info:

Periodical:

Defect and Diffusion Forum (Volumes 297-301)

Pages:

820-825

Citation:

Online since:

April 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2010 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] L. Weber and R. Tavangar: Scripta Mater. Vol. 57 (2007), p.988.

Google Scholar

[2] T. Schubert et al.: Scripta Mater. Vol. 58 (2008), p.263.

Google Scholar

[3] T. Schubert et al.: Mater. Sci. Eng. Vol. A 475 (2008), p.39.

Google Scholar

[4] Y.L. Wang et al.: Acta Mater. Compos. Sinica Vol. 15 (1998), p.83.

Google Scholar

[5] T. Šrámková and T. Log: Int. J. Heat Mass Transfer Vol. 38 (1995), p.2885.

Google Scholar

[6] L. Vozár and T. Šrámková: Int. J. Heat Mass Transfer Vol. 40 (1997), p.1647.

Google Scholar

[7] C. Pradere and C. Sauder: Carbon Vol. 46 (2008), p.1874.

Google Scholar

[8] K. Iždinský et al.: Kovove Mater. Vol. 44 (2006), p.327.

Google Scholar

[9] A. Rudajevová, S. Kúdela Jr., S. Kúdela and P. Lukáč: Scripta Mater. Vol. 53 (2005), p.1417.

DOI: 10.1016/j.scriptamat.2005.08.018

Google Scholar

[10] T. H. Nam, G. Requena and H. P. Degischer: Composites: Vol. A 39 (2008), p.856.

Google Scholar

[11] A. Rudajevová and O. Musil: Kovove Mater. Vol. 43 (2005), p.210.

Google Scholar

[12] A. Rudajevová and P. Lukáč: Kovove Mater. Vol. 46 (2008), p.145.

Google Scholar

[13] P. Lukáč and A. Rudajevová: Kovove Mater. Vol. 41 (2003), p.281.

Google Scholar

[14] S. Kumar, S. Ingole, H. Dieringa and K.U. Kainer: Comp. Sci. Tech. Vol. 63 (2003), p.1805.

Google Scholar

[15] I. Dutta: Acta Mater. Vol. 48 (2000), p.1055.

Google Scholar

[16] H. E. Nassini, M. Moreno and O.C. Gonzales.: J. Mater. Sci. Vol. 36 (2001), p.2759.

Google Scholar

[17] S. Kúdela Jr., A. Rudajevová and S. Kúdela: Mater. Sci. Eng. Vol. A 462 (2007), p.239.

Google Scholar